testsson / app.py
cakemus's picture
disk space fix test
71bbdfb
raw
history blame
5.98 kB
import gradio as gr
import spaces
#import gradio.helpers
import torch
import os
import shutil
from glob import glob
from pathlib import Path
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
import uuid
import random
from huggingface_hub import hf_hub_download
#gradio.helpers.CACHED_FOLDER = '/data/cache'
# OPTIONAL: Clear caches at startup to free space (comment out if you prefer not to)
hf_cache = os.path.expanduser("~/.cache/huggingface")
torch_cache = os.path.expanduser("~/.cache/torch")
if os.path.exists(hf_cache):
shutil.rmtree(hf_cache)
if os.path.exists(torch_cache):
shutil.rmtree(torch_cache)
# Load the pipeline with authentication token
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
torch_dtype=torch.float16,
variant="fp16",
use_auth_token=os.getenv("HUGGINGFACE_TOKEN") # Fetch the token from environment if set
)
pipe.to("cuda")
# Uncomment these lines only if you want experimental compilation (and if your environment supports it)
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
# pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
max_64_bit_int = 2**63 - 1
def clean_outputs(output_folder: str, keep: int = 1):
"""
Remove old video files to prevent using all disk space.
Keeps the most recent <keep> files.
"""
files = sorted(glob(os.path.join(output_folder, "*.mp4")), key=os.path.getmtime)
if len(files) > keep:
for old_file in files[:-keep]:
os.remove(old_file)
@spaces.GPU(duration=250)
def sample(
image: Image,
seed: Optional[int] = 42,
randomize_seed: bool = True,
motion_bucket_id: int = 127,
fps_id: int = 6,
version: str = "svd_xt",
cond_aug: float = 0.02,
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: str = "outputs",
progress=gr.Progress(track_tqdm=True)
):
if image.mode == "RGBA":
image = image.convert("RGB")
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
# Reduce num_frames from 25 to 10 to consume less space
frames = pipe(
image,
decode_chunk_size=decoding_t,
generator=generator,
motion_bucket_id=motion_bucket_id,
noise_aug_strength=0.1,
num_frames=10 # reduced from 25
).frames[0]
export_to_video(frames, video_path, fps=fps_id)
torch.manual_seed(seed)
# Clean up old videos to prevent filling disk
clean_outputs(output_folder, keep=2)
return video_path, seed
def resize_image(image, output_size=(1024, 576)):
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1]
image_aspect = image.width / image.height
# Resize then crop if the original image is larger
if image_aspect > target_aspect:
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
with gr.Blocks() as demo:
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `~4s` vid from a single image at (`10 frames` at `6 fps`). This demo uses [🧨 diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd) for low VRAM usage.
''')
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
generate_btn = gr.Button("Generate")
video = gr.Video()
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be num_frames/fps", value=6, minimum=5, maximum=30)
# Resize on upload
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
# Generate with sample() function
generate_btn.click(
fn=sample,
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
outputs=[video, seed],
api_name="video"
)
# REMOVED: gr.Examples(...) that referenced local images like "blink_meme.png" which don't exist
if __name__ == "__main__":
# remove `share=True` because it is not supported on Hugging Face Spaces
demo.launch(show_api=False)