import gradio as gr import spaces #import gradio.helpers import torch import os import shutil from glob import glob from pathlib import Path from typing import Optional from diffusers import StableVideoDiffusionPipeline from diffusers.utils import load_image, export_to_video from PIL import Image import uuid import random from huggingface_hub import hf_hub_download #gradio.helpers.CACHED_FOLDER = '/data/cache' # OPTIONAL: Clear caches at startup to free space (comment out if you prefer not to) hf_cache = os.path.expanduser("~/.cache/huggingface") torch_cache = os.path.expanduser("~/.cache/torch") if os.path.exists(hf_cache): shutil.rmtree(hf_cache) if os.path.exists(torch_cache): shutil.rmtree(torch_cache) # Load the pipeline with authentication token pipe = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16", use_auth_token=os.getenv("HUGGINGFACE_TOKEN") # Fetch the token from environment if set ) pipe.to("cuda") # Uncomment these lines only if you want experimental compilation (and if your environment supports it) # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) max_64_bit_int = 2**63 - 1 def clean_outputs(output_folder: str, keep: int = 1): """ Remove old video files to prevent using all disk space. Keeps the most recent files. """ files = sorted(glob(os.path.join(output_folder, "*.mp4")), key=os.path.getmtime) if len(files) > keep: for old_file in files[:-keep]: os.remove(old_file) @spaces.GPU(duration=250) def sample( image: Image, seed: Optional[int] = 42, randomize_seed: bool = True, motion_bucket_id: int = 127, fps_id: int = 6, version: str = "svd_xt", cond_aug: float = 0.02, decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. device: str = "cuda", output_folder: str = "outputs", progress=gr.Progress(track_tqdm=True) ): if image.mode == "RGBA": image = image.convert("RGB") if randomize_seed: seed = random.randint(0, max_64_bit_int) generator = torch.manual_seed(seed) os.makedirs(output_folder, exist_ok=True) base_count = len(glob(os.path.join(output_folder, "*.mp4"))) video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") # Reduce num_frames from 25 to 10 to consume less space frames = pipe( image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=10 # reduced from 25 ).frames[0] export_to_video(frames, video_path, fps=fps_id) torch.manual_seed(seed) # Clean up old videos to prevent filling disk clean_outputs(output_folder, keep=2) return video_path, seed def resize_image(image, output_size=(1024, 576)): # Calculate aspect ratios target_aspect = output_size[0] / output_size[1] image_aspect = image.width / image.height # Resize then crop if the original image is larger if image_aspect > target_aspect: new_height = output_size[1] new_width = int(new_height * image_aspect) resized_image = image.resize((new_width, new_height), Image.LANCZOS) left = (new_width - output_size[0]) / 2 top = 0 right = (new_width + output_size[0]) / 2 bottom = output_size[1] else: new_width = output_size[0] new_height = int(new_width / image_aspect) resized_image = image.resize((new_width, new_height), Image.LANCZOS) left = 0 top = (new_height - output_size[1]) / 2 right = output_size[0] bottom = (new_height + output_size[1]) / 2 cropped_image = resized_image.crop((left, top, right, bottom)) return cropped_image with gr.Blocks() as demo: gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact)) #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `~4s` vid from a single image at (`10 frames` at `6 fps`). This demo uses [🧨 diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd) for low VRAM usage. ''') with gr.Row(): with gr.Column(): image = gr.Image(label="Upload your image", type="pil") generate_btn = gr.Button("Generate") video = gr.Video() with gr.Accordion("Advanced options", open=False): seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be num_frames/fps", value=6, minimum=5, maximum=30) # Resize on upload image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) # Generate with sample() function generate_btn.click( fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video" ) # REMOVED: gr.Examples(...) that referenced local images like "blink_meme.png" which don't exist if __name__ == "__main__": # remove `share=True` because it is not supported on Hugging Face Spaces demo.launch(show_api=False)