File size: 5,691 Bytes
b935e3d b950d1e 1da8dac 71bbdfb 1da8dac b950d1e 1da8dac b950d1e 1da8dac b950d1e 1da8dac b950d1e 1da8dac b950d1e 1da8dac 57a950e 71bbdfb 57a950e e47fa4e 1da8dac 4736362 e47fa4e 71bbdfb 1da8dac 71bbdfb ef2375d b950d1e e47fa4e b950d1e 71bbdfb b950d1e 71bbdfb b950d1e 1da8dac b950d1e 71bbdfb 1da8dac b950d1e 1da8dac b950d1e 1da8dac b950d1e 1da8dac b950d1e 1da8dac b950d1e 1da8dac b950d1e 45a6a13 1da8dac 71bbdfb f404d24 71bbdfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
import spaces
#import gradio.helpers
import torch
import os
import shutil
from glob import glob
from pathlib import Path
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
import uuid
import random
from huggingface_hub import hf_hub_download
#gradio.helpers.CACHED_FOLDER = '/data/cache'
# OPTIONAL: Clear caches at startup to free space
hf_cache = os.path.expanduser("~/.cache/huggingface")
torch_cache = os.path.expanduser("~/.cache/torch")
if os.path.exists(hf_cache):
shutil.rmtree(hf_cache)
if os.path.exists(torch_cache):
shutil.rmtree(torch_cache)
# Configure ZeroGPU to use memory instead of disk
from spaces.zero.config import Config
Config.zerogpu_offload_dir = None # Disable disk offloading to prevent disk space issues
# Load the pipeline with authentication token
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
torch_dtype=torch.float16,
variant="fp16",
use_auth_token=os.getenv("HUGGINGFACE_TOKEN") # Fetch the token from environment if set
)
pipe.to("cuda")
max_64_bit_int = 2**63 - 1
def clean_outputs(output_folder: str, keep: int = 1):
"""
Remove old video files to prevent using all disk space.
Keeps the most recent <keep> files.
"""
files = sorted(glob(os.path.join(output_folder, "*.mp4")), key=os.path.getmtime)
if len(files) > keep:
for old_file in files[:-keep]:
os.remove(old_file)
@spaces.GPU(duration=250)
def sample(
image: Image,
seed: Optional[int] = 42,
randomize_seed: bool = True,
motion_bucket_id: int = 127,
fps_id: int = 6,
version: str = "svd_xt",
cond_aug: float = 0.02,
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: str = "outputs",
progress=gr.Progress(track_tqdm=True)
):
if image.mode == "RGBA":
image = image.convert("RGB")
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
# Reduce num_frames from 25 to 10 to consume less space
frames = pipe(
image,
decode_chunk_size=decoding_t,
generator=generator,
motion_bucket_id=motion_bucket_id,
noise_aug_strength=0.1,
num_frames=10 # reduced from 25
).frames[0]
export_to_video(frames, video_path, fps=fps_id)
torch.manual_seed(seed)
# Clean up old videos to prevent filling disk
clean_outputs(output_folder, keep=2)
return video_path, seed
def resize_image(image, output_size=(1024, 576)):
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1]
image_aspect = image.width / image.height
# Resize then crop if the original image is larger
if image_aspect > target_aspect:
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
with gr.Blocks() as demo:
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `~4s` vid from a single image at (`10 frames` at `6 fps`). This demo uses [🧨 diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd) for low VRAM usage.
''')
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
generate_btn = gr.Button("Generate")
video = gr.Video()
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be num_frames/fps", value=6, minimum=5, maximum=30)
# Resize on upload
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
# Generate with sample() function
generate_btn.click(
fn=sample,
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
outputs=[video, seed],
api_name="video"
)
if __name__ == "__main__":
demo.launch(show_api=False)
|