burhan112 commited on
Commit
84008c9
·
verified ·
1 Parent(s): 3c2266c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +179 -28
app.py CHANGED
@@ -4,41 +4,192 @@ import torch.nn as nn
4
  import sentencepiece as spm
5
  import math
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Load tokenizers
8
- sp_pseudo = spm.SentencePieceProcessor(model_file="pseudocode_tokenizer.model") # For decoding pseudocode (target)
9
- sp_code = spm.SentencePieceProcessor(model_file="code_tokenizer.model") # For encoding C++ (source)
10
 
11
  # Load the full saved model (architecture + weights)
12
- model_path = "code2pseudo.pth"
13
- model = torch.load(model_path, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"), weights_only=False)
14
  model.eval()
 
15
 
16
- # Function to generate pseudocode
17
  def generate_pseudocode(cpp_code, max_len):
 
18
  model.eval()
19
- src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long) # Tokenize C++ code
20
- tgt = torch.tensor([[2]], dtype=torch.long) # <bos_id>=2
 
21
  generated_tokens = [2] # Start with <START>
22
- for _ in range(max_len):
23
- output = model(src, tgt)
24
- next_token = output[:, -1, :].argmax(-1).item()
25
- generated_tokens.append(next_token)
26
- tgt = torch.cat([tgt, torch.tensor([[next_token]])], dim=1)
27
- if next_token == 3: # <END>=3
28
- break
29
- return sp_pseudo.decode_ids(generated_tokens) # Final decoded output
30
-
31
- # Gradio interface
32
- demo = gr.Interface(
33
- fn=generate_pseudocode,
34
- inputs=[
35
- gr.Textbox(placeholder="Enter C++ code here", label="C++ Code"),
36
- gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max Tokens")
37
- ],
38
- outputs=gr.Textbox(label="Generated Pseudocode"),
39
- title="C++ to Pseudocode Converter",
40
- description="Enter C++ code and get its pseudocode equivalent using a transformer model."
41
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  if __name__ == "__main__":
44
- demo.launch()
 
4
  import sentencepiece as spm
5
  import math
6
 
7
+ # Define Transformer components (unchanged)
8
+ class MultiHeadAttention(nn.Module):
9
+ def __init__(self, d_model, num_heads):
10
+ super(MultiHeadAttention, self).__init__()
11
+ assert d_model % num_heads == 0
12
+ self.d_model = d_model
13
+ self.num_heads = num_heads
14
+ self.d_k = d_model // num_heads
15
+ self.W_q = nn.Linear(d_model, d_model)
16
+ self.W_k = nn.Linear(d_model, d_model)
17
+ self.W_v = nn.Linear(d_model, d_model)
18
+ self.W_o = nn.Linear(d_model, d_model)
19
+
20
+ def scaled_dot_product_attention(self, Q, K, V, mask=None):
21
+ attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
22
+ if mask is not None:
23
+ attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
24
+ attn_probs = torch.softmax(attn_scores, dim=-1)
25
+ output = torch.matmul(attn_probs, V)
26
+ return output
27
+
28
+ def split_heads(self, x):
29
+ batch_size, seq_length, d_model = x.size()
30
+ return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
31
+
32
+ def combine_heads(self, x):
33
+ batch_size, _, seq_length, d_k = x.size()
34
+ return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
35
+
36
+ def forward(self, Q, K, V, mask=None):
37
+ Q = self.split_heads(self.W_q(Q))
38
+ K = self.split_heads(self.W_k(K))
39
+ V = self.split_heads(self.W_v(V))
40
+ attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
41
+ output = self.W_o(self.combine_heads(attn_output))
42
+ return output
43
+
44
+ class PositionWiseFeedForward(nn.Module):
45
+ def __init__(self, d_model, d_ff):
46
+ super(PositionWiseFeedForward, self).__init__()
47
+ self.fc1 = nn.Linear(d_model, d_ff)
48
+ self.fc2 = nn.Linear(d_ff, d_model)
49
+ self.relu = nn.ReLU()
50
+
51
+ def forward(self, x):
52
+ return self.fc2(self.relu(self.fc1(x)))
53
+
54
+ class PositionalEncoding(nn.Module):
55
+ def __init__(self, d_model, max_seq_length):
56
+ super(PositionalEncoding, self).__init__()
57
+ pe = torch.zeros(max_seq_length, d_model)
58
+ position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
59
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
60
+ pe[:, 0::2] = torch.sin(position * div_term)
61
+ pe[:, 1::2] = torch.cos(position * div_term)
62
+ self.register_buffer('pe', pe.unsqueeze(0))
63
+
64
+ def forward(self, x):
65
+ return x + self.pe[:, :x.size(1)]
66
+
67
+ class EncoderLayer(nn.Module):
68
+ def __init__(self, d_model, num_heads, d_ff, dropout):
69
+ super(EncoderLayer, self).__init__()
70
+ self.self_attn = MultiHeadAttention(d_model, num_heads)
71
+ self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
72
+ self.norm1 = nn.LayerNorm(d_model)
73
+ self.norm2 = nn.LayerNorm(d_model)
74
+ self.dropout = nn.Dropout(dropout)
75
+
76
+ def forward(self, x, mask):
77
+ attn_output = self.self_attn(x, x, x, mask)
78
+ x = self.norm1(x + self.dropout(attn_output))
79
+ ff_output = self.feed_forward(x)
80
+ x = self.norm2(x + self.dropout(ff_output))
81
+ return x
82
+
83
+ class DecoderLayer(nn.Module):
84
+ def __init__(self, d_model, num_heads, d_ff, dropout):
85
+ super(DecoderLayer, self).__init__()
86
+ self.self_attn = MultiHeadAttention(d_model, num_heads)
87
+ self.cross_attn = MultiHeadAttention(d_model, num_heads)
88
+ self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
89
+ self.norm1 = nn.LayerNorm(d_model)
90
+ self.norm2 = nn.LayerNorm(d_model)
91
+ self.norm3 = nn.LayerNorm(d_model)
92
+ self.dropout = nn.Dropout(dropout)
93
+
94
+ def forward(self, x, enc_output, src_mask, tgt_mask):
95
+ attn_output = self.self_attn(x, x, x, tgt_mask)
96
+ x = self.norm1(x + self.dropout(attn_output))
97
+ attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
98
+ x = self.norm2(x + self.dropout(attn_output))
99
+ ff_output = self.feed_forward(x)
100
+ x = self.norm3(x + self.dropout(ff_output))
101
+ return x
102
+
103
+ class Transformer(nn.Module):
104
+ def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):
105
+ super(Transformer, self).__init__()
106
+ self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
107
+ self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
108
+ self.positional_encoding = PositionalEncoding(d_model, max_seq_length)
109
+ self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
110
+ self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
111
+ self.fc = nn.Linear(d_model, tgt_vocab_size)
112
+ self.dropout = nn.Dropout(dropout)
113
+
114
+ def generate_mask(self, src, tgt):
115
+ src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
116
+ tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3)
117
+ seq_length = tgt.size(1)
118
+ nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
119
+ tgt_mask = tgt_mask & nopeak_mask
120
+ return src_mask, tgt_mask
121
+
122
+ def forward(self, src, tgt):
123
+ src_mask, tgt_mask = self.generate_mask(src, tgt)
124
+ src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
125
+ tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))
126
+ enc_output = src_embedded
127
+ for enc_layer in self.encoder_layers:
128
+ enc_output = enc_layer(enc_output, src_mask)
129
+ dec_output = tgt_embedded
130
+ for dec_layer in self.decoder_layers:
131
+ dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)
132
+ output = self.fc(dec_output)
133
+ return output
134
+
135
+ # Set device
136
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
137
+
138
  # Load tokenizers
139
+ sp_pseudo = spm.SentencePieceProcessor(model_file="pseudo.model") # For decoding pseudocode (target)
140
+ sp_code = spm.SentencePieceProcessor(model_file="code.model") # For encoding C++ (source)
141
 
142
  # Load the full saved model (architecture + weights)
143
+ model_path = "transformer_cpp_to_pseudo.pth"
144
+ model = torch.load(model_path, map_location=device, weights_only=False)
145
  model.eval()
146
+ model = model.to(device)
147
 
 
148
  def generate_pseudocode(cpp_code, max_len):
149
+ """Generate pseudocode from C++ code with streaming output."""
150
  model.eval()
151
+ src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long, device=device) # Tokenize C++ code
152
+ tgt = torch.tensor([[2]], dtype=torch.long, device=device) # <bos_id>=2
153
+
154
  generated_tokens = [2] # Start with <START>
155
+ response = ""
156
+ with torch.no_grad():
157
+ for _ in range(max_len):
158
+ output = model(src, tgt)
159
+ next_token = output[:, -1, :].argmax(-1).item()
160
+ generated_tokens.append(next_token)
161
+ tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
162
+ response = sp_pseudo.decode_ids(generated_tokens) # Decode to pseudocode
163
+ yield response # Yield partial output
164
+ if next_token == 3: # <END>=3 (adjust if your EOS ID differs)
165
+ break
166
+ yield response # Final output
167
+
168
+ def respond(message, history, max_tokens):
169
+ """Wrapper for Gradio interface."""
170
+ for response in generate_pseudocode(message, max_tokens):
171
+ yield response
172
+
173
+ # Gradio UI setup with Blocks
174
+ with gr.Blocks(title="C++ to Pseudocode Transformer") as demo:
175
+ gr.Markdown("## C++ to Pseudocode Converter")
176
+ gr.Markdown("Enter C++ code below and press Submit to generate pseudocode.")
177
+ cpp_input = gr.Textbox(
178
+ label="C++ Code",
179
+ placeholder="e.g., 'int x = 5; for(int i=0; i<x; i++) cout << i;'",
180
+ lines=5
181
+ )
182
+ submit_btn = gr.Button("Submit", variant="primary")
183
+ pseudocode_output = gr.Textbox(
184
+ label="Generated Pseudocode",
185
+ lines=5
186
+ )
187
+
188
+ submit_btn.click(
189
+ fn=respond,
190
+ inputs=[cpp_input, gr.State(value=[]), gr.Slider(minimum=10, maximum=1000, value=50, step=1, visible=False)],
191
+ outputs=pseudocode_output
192
+ )
193
 
194
  if __name__ == "__main__":
195
+ demo.launch()