File size: 8,834 Bytes
9b2f41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd564a5
9b2f41b
 
 
 
b9eae41
9b2f41b
 
 
 
b9eae41
9b2f41b
 
 
fd564a5
9b2f41b
 
b9eae41
 
 
 
9b2f41b
b9eae41
9b2f41b
 
 
 
b9eae41
 
 
 
 
9b2f41b
b9eae41
9b2f41b
b9eae41
9b2f41b
b9eae41
9b2f41b
b9eae41
 
9b2f41b
 
 
 
 
fd564a5
 
 
 
 
9b2f41b
6f656b3
fd564a5
6f656b3
fd564a5
9b2f41b
 
 
 
e393094
9b2f41b
 
 
 
fd564a5
9b2f41b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import torch
import torch.nn as nn
import sentencepiece as spm
import math

# Transformer class definitions (unchanged)
class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        assert d_model % num_heads == 0
        self.d_model = d_model
        self.num_heads = num_heads
        self.d_k = d_model // num_heads
        self.W_q = nn.Linear(d_model, d_model)
        self.W_k = nn.Linear(d_model, d_model)
        self.W_v = nn.Linear(d_model, d_model)
        self.W_o = nn.Linear(d_model, d_model)
        
    def scaled_dot_product_attention(self, Q, K, V, mask=None):
        attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
        attn_probs = torch.softmax(attn_scores, dim=-1)
        output = torch.matmul(attn_probs, V)
        return output
        
    def split_heads(self, x):
        batch_size, seq_length, d_model = x.size()
        return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
        
    def combine_heads(self, x):
        batch_size, _, seq_length, d_k = x.size()
        return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
        
    def forward(self, Q, K, V, mask=None):
        Q = self.split_heads(self.W_q(Q))
        K = self.split_heads(self.W_k(K))
        V = self.split_heads(self.W_v(V))
        attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
        output = self.W_o(self.combine_heads(attn_output))
        return output

class PositionWiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff):
        super(PositionWiseFeedForward, self).__init__()
        self.fc1 = nn.Linear(d_model, d_ff)
        self.fc2 = nn.Linear(d_ff, d_model)
        self.relu = nn.ReLU()

    def forward(self, x):
        return self.fc2(self.relu(self.fc1(x)))

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_seq_length):
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_seq_length, d_model)
        position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe.unsqueeze(0))
        
    def forward(self, x):
        return x + self.pe[:, :x.size(1)]

class EncoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, mask):
        attn_output = self.self_attn(x, x, x, mask)
        x = self.norm1(x + self.dropout(attn_output))
        ff_output = self.feed_forward(x)
        x = self.norm2(x + self.dropout(ff_output))
        return x

class DecoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout):
        super(DecoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.cross_attn = MultiHeadAttention(d_model, num_heads)
        self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, enc_output, src_mask, tgt_mask):
        attn_output = self.self_attn(x, x, x, tgt_mask)
        x = self.norm1(x + self.dropout(attn_output))
        attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
        x = self.norm2(x + self.dropout(attn_output))
        ff_output = self.feed_forward(x)
        x = self.norm3(x + self.dropout(ff_output))
        return x

class Transformer(nn.Module):
    def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):
        super(Transformer, self).__init__()
        self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
        self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
        self.positional_encoding = PositionalEncoding(d_model, max_seq_length)
        self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
        self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
        self.fc = nn.Linear(d_model, tgt_vocab_size)
        self.dropout = nn.Dropout(dropout)

    def generate_mask(self, src, tgt):
        src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
        tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3)
        seq_length = tgt.size(1)
        nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
        tgt_mask = tgt_mask & nopeak_mask
        return src_mask, tgt_mask

    def forward(self, src, tgt):
        src_mask, tgt_mask = self.generate_mask(src, tgt)
        src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
        tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))
        enc_output = src_embedded
        for enc_layer in self.encoder_layers:
            enc_output = enc_layer(enc_output, src_mask)
        dec_output = tgt_embedded
        for dec_layer in self.decoder_layers:
            dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)
        output = self.fc(dec_output)
        return output

# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load tokenizers
sp_code = spm.SentencePieceProcessor(model_file="code_tokenizer.model")      # C++ tokenizer for input
sp_pseudo = spm.SentencePieceProcessor(model_file="pseudocode_tokenizer.model")  # Pseudocode tokenizer for output

# Load the model trained for C++ to pseudocode
model_path = "c2p.pth"  # Ensure this is the correct model for C++ to pseudocode
model = torch.load(model_path, map_location=device, weights_only=False)
model.eval()
model = model.to(device)

# Function to generate pseudocode from C++ code with streaming
def generate_pseudocode(cpp_code, max_len=500):
    model.eval()
    src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long, device=device)  # Tokenize C++ input
    tgt = torch.tensor([[2]], dtype=torch.long, device=device)  # <BOS> token (ID=2)
    
    generated_tokens = [2]  # Start with <BOS>
    eos_id = sp_pseudo.eos_id()  # Dynamically get <EOS> ID from tokenizer
    print(f"Input C++ tokens: {sp_code.encode_as_ids(cpp_code)}")  # Debug input
    print(f"Using EOS ID: {eos_id}")  # Debug EOS ID
    
    with torch.no_grad():
        for i in range(max_len):
            output = model(src, tgt)
            next_token = output[:, -1, :].argmax(-1).item()
            generated_tokens.append(next_token)
            tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
            response = sp_pseudo.decode_ids(generated_tokens)  # Decode to pseudocode
            print(f"Step {i}: Next token = {next_token}, Partial output = {response}")  # Debug step
            yield response  # Yield partial output for streaming
            if next_token == eos_id:  # Stop at <EOS>
                print("EOS detected, stopping generation.")
                break
        print("Generation complete or max length reached.")
    
    yield response  # Final output

# Gradio interface function with streaming
def generate_output(cpp_code):
    for response in generate_pseudocode(cpp_code, max_len=500):
        yield response

# Gradio UI setup
with gr.Blocks(title="C++ to Pseudocode Transformer") as demo:
    gr.Markdown("## C++ to Pseudocode Converter")
    gr.Markdown("Enter C++ code below to generate pseudocode.")
    cpp_input = gr.Textbox(
        label="C++ Code",
        placeholder="e.g., 'int main() { int n; cin >> n; }'",
        lines=5
    )
    generate_btn = gr.Button("Generate", variant="primary", elem_classes="btn-blue")
    pseudocode_output = gr.Textbox(
        label="Generated Pseudocode",
        lines=5
    )
    
    generate_btn.click(
        fn=generate_output,
        inputs=[cpp_input],
        outputs=pseudocode_output
    )

demo.launch()

# Custom CSS
demo.css = """
.btn-blue {
    background-color: #007bff;
    color: white;
    border: none;
}
.btn-blue:hover {
    background-color: #0056b3;
}
"""