Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1 +1,198 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import sentencepiece as spm
|
5 |
+
import math
|
6 |
+
|
7 |
+
# Transformer class definitions (unchanged)
|
8 |
+
class MultiHeadAttention(nn.Module):
|
9 |
+
def __init__(self, d_model, num_heads):
|
10 |
+
super(MultiHeadAttention, self).__init__()
|
11 |
+
assert d_model % num_heads == 0
|
12 |
+
self.d_model = d_model
|
13 |
+
self.num_heads = num_heads
|
14 |
+
self.d_k = d_model // num_heads
|
15 |
+
self.W_q = nn.Linear(d_model, d_model)
|
16 |
+
self.W_k = nn.Linear(d_model, d_model)
|
17 |
+
self.W_v = nn.Linear(d_model, d_model)
|
18 |
+
self.W_o = nn.Linear(d_model, d_model)
|
19 |
+
|
20 |
+
def scaled_dot_product_attention(self, Q, K, V, mask=None):
|
21 |
+
attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
|
22 |
+
if mask is not None:
|
23 |
+
attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
|
24 |
+
attn_probs = torch.softmax(attn_scores, dim=-1)
|
25 |
+
output = torch.matmul(attn_probs, V)
|
26 |
+
return output
|
27 |
+
|
28 |
+
def split_heads(self, x):
|
29 |
+
batch_size, seq_length, d_model = x.size()
|
30 |
+
return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
|
31 |
+
|
32 |
+
def combine_heads(self, x):
|
33 |
+
batch_size, _, seq_length, d_k = x.size()
|
34 |
+
return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
|
35 |
+
|
36 |
+
def forward(self, Q, K, V, mask=None):
|
37 |
+
Q = self.split_heads(self.W_q(Q))
|
38 |
+
K = self.split_heads(self.W_k(K))
|
39 |
+
V = self.split_heads(self.W_v(V))
|
40 |
+
attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
|
41 |
+
output = self.W_o(self.combine_heads(attn_output))
|
42 |
+
return output
|
43 |
+
|
44 |
+
class PositionWiseFeedForward(nn.Module):
|
45 |
+
def __init__(self, d_model, d_ff):
|
46 |
+
super(PositionWiseFeedForward, self).__init__()
|
47 |
+
self.fc1 = nn.Linear(d_model, d_ff)
|
48 |
+
self.fc2 = nn.Linear(d_ff, d_model)
|
49 |
+
self.relu = nn.ReLU()
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
return self.fc2(self.relu(self.fc1(x)))
|
53 |
+
|
54 |
+
class PositionalEncoding(nn.Module):
|
55 |
+
def __init__(self, d_model, max_seq_length):
|
56 |
+
super(PositionalEncoding, self).__init__()
|
57 |
+
pe = torch.zeros(max_seq_length, d_model)
|
58 |
+
position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
|
59 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
|
60 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
61 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
62 |
+
self.register_buffer('pe', pe.unsqueeze(0))
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
return x + self.pe[:, :x.size(1)]
|
66 |
+
|
67 |
+
class EncoderLayer(nn.Module):
|
68 |
+
def __init__(self, d_model, num_heads, d_ff, dropout):
|
69 |
+
super(EncoderLayer, self).__init__()
|
70 |
+
self.self_attn = MultiHeadAttention(d_model, num_heads)
|
71 |
+
self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
|
72 |
+
self.norm1 = nn.LayerNorm(d_model)
|
73 |
+
self.norm2 = nn.LayerNorm(d_model)
|
74 |
+
self.dropout = nn.Dropout(dropout)
|
75 |
+
|
76 |
+
def forward(self, x, mask):
|
77 |
+
attn_output = self.self_attn(x, x, x, mask)
|
78 |
+
x = self.norm1(x + self.dropout(attn_output))
|
79 |
+
ff_output = self.feed_forward(x)
|
80 |
+
x = self.norm2(x + self.dropout(ff_output))
|
81 |
+
return x
|
82 |
+
|
83 |
+
class DecoderLayer(nn.Module):
|
84 |
+
def __init__(self, d_model, num_heads, d_ff, dropout):
|
85 |
+
super(DecoderLayer, self).__init__()
|
86 |
+
self.self_attn = MultiHeadAttention(d_model, num_heads)
|
87 |
+
self.cross_attn = MultiHeadAttention(d_model, num_heads)
|
88 |
+
self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
|
89 |
+
self.norm1 = nn.LayerNorm(d_model)
|
90 |
+
self.norm2 = nn.LayerNorm(d_model)
|
91 |
+
self.norm3 = nn.LayerNorm(d_model)
|
92 |
+
self.dropout = nn.Dropout(dropout)
|
93 |
+
|
94 |
+
def forward(self, x, enc_output, src_mask, tgt_mask):
|
95 |
+
attn_output = self.self_attn(x, x, x, tgt_mask)
|
96 |
+
x = self.norm1(x + self.dropout(attn_output))
|
97 |
+
attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
|
98 |
+
x = self.norm2(x + self.dropout(attn_output))
|
99 |
+
ff_output = self.feed_forward(x)
|
100 |
+
x = self.norm3(x + self.dropout(ff_output))
|
101 |
+
return x
|
102 |
+
|
103 |
+
class Transformer(nn.Module):
|
104 |
+
def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):
|
105 |
+
super(Transformer, self).__init__()
|
106 |
+
self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
|
107 |
+
self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
|
108 |
+
self.positional_encoding = PositionalEncoding(d_model, max_seq_length)
|
109 |
+
self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
|
110 |
+
self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
|
111 |
+
self.fc = nn.Linear(d_model, tgt_vocab_size)
|
112 |
+
self.dropout = nn.Dropout(dropout)
|
113 |
+
|
114 |
+
def generate_mask(self, src, tgt):
|
115 |
+
src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
|
116 |
+
tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3)
|
117 |
+
seq_length = tgt.size(1)
|
118 |
+
nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
|
119 |
+
tgt_mask = tgt_mask & nopeak_mask
|
120 |
+
return src_mask, tgt_mask
|
121 |
+
|
122 |
+
def forward(self, src, tgt):
|
123 |
+
src_mask, tgt_mask = self.generate_mask(src, tgt)
|
124 |
+
src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
|
125 |
+
tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))
|
126 |
+
enc_output = src_embedded
|
127 |
+
for enc_layer in self.encoder_layers:
|
128 |
+
enc_output = enc_layer(enc_output, src_mask)
|
129 |
+
dec_output = tgt_embedded
|
130 |
+
for dec_layer in self.decoder_layers:
|
131 |
+
dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)
|
132 |
+
output = self.fc(dec_output)
|
133 |
+
return output
|
134 |
+
|
135 |
+
# Device setup
|
136 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
137 |
+
|
138 |
+
# Load tokenizers (same files, but roles swapped)
|
139 |
+
sp_code = spm.SentencePieceProcessor(model_file="code_tokenizer.model") # C++ tokenizer for input
|
140 |
+
sp_pseudo = spm.SentencePieceProcessor(model_file="pseudocode_tokenizer.model") # Pseudocode tokenizer for output
|
141 |
+
|
142 |
+
# Load the model trained for C++ to pseudocode
|
143 |
+
model_path = "c2p.pth" # Assuming you retrained and saved as 'c2p.pth'
|
144 |
+
model = torch.load(model_path, map_location=device, weights_only=False)
|
145 |
+
model.eval()
|
146 |
+
model = model.to(device)
|
147 |
+
|
148 |
+
# Function to generate pseudocode from C++ code
|
149 |
+
def generate_pseudocode(cpp_code, max_len=500):
|
150 |
+
model.eval()
|
151 |
+
src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long, device=device) # Tokenize C++ input
|
152 |
+
tgt = torch.tensor([[2]], dtype=torch.long, device=device) # <BOS> token (assuming ID=2)
|
153 |
+
|
154 |
+
generated_tokens = [2] # Start with <BOS>
|
155 |
+
with torch.no_grad():
|
156 |
+
for _ in range(max_len):
|
157 |
+
output = model(src, tgt)
|
158 |
+
next_token = output[:, -1, :].argmax(-1).item()
|
159 |
+
generated_tokens.append(next_token)
|
160 |
+
tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
|
161 |
+
if next_token == 3: # <EOS> token (assuming ID=3)
|
162 |
+
break
|
163 |
+
|
164 |
+
response = sp_pseudo.decode_ids(generated_tokens) # Decode using pseudocode tokenizer
|
165 |
+
return response
|
166 |
+
|
167 |
+
# Gradio interface function
|
168 |
+
def generate_output(cpp_code):
|
169 |
+
pseudocode = generate_pseudocode(cpp_code)
|
170 |
+
return pseudocode
|
171 |
+
|
172 |
+
# Gradio UI setup
|
173 |
+
with gr.Blocks(title="C++ to Pseudocode Transformer") as demo:
|
174 |
+
gr.Markdown("## C++ to Pseudocode Converter")
|
175 |
+
gr.Markdown("Enter C++ code below to generate pseudocode.")
|
176 |
+
cpp_input = gr.Code(label="C++ Code", language="cpp", placeholder="e.g., 'int main() { int n; cin >> n; }'")
|
177 |
+
generate_btn = gr.Button("Generate", variant="primary", elem_classes="btn-blue")
|
178 |
+
pseudocode_output = gr.Textbox(label="Generated Pseudocode")
|
179 |
+
|
180 |
+
generate_btn.click(
|
181 |
+
fn=generate_output,
|
182 |
+
inputs=[cpp_input],
|
183 |
+
outputs=pseudocode_output
|
184 |
+
)
|
185 |
+
|
186 |
+
demo.launch()
|
187 |
+
|
188 |
+
# Custom CSS (unchanged)
|
189 |
+
demo.css = """
|
190 |
+
.btn-blue {
|
191 |
+
background-color: #007bff;
|
192 |
+
color: white;
|
193 |
+
border: none;
|
194 |
+
}
|
195 |
+
.btn-blue:hover {
|
196 |
+
background-color: #0056b3;
|
197 |
+
}
|
198 |
+
"""
|