Spaces:
Sleeping
Sleeping
import gradio as gr | |
import faiss | |
import numpy as np | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
import google.generativeai as genai | |
import re | |
import os | |
# Load data and FAISS index | |
def load_data_and_index(): | |
docs_df = pd.read_pickle("data.pkl") # Adjust path for HF Spaces | |
embeddings = np.array(docs_df['embeddings'].tolist(), dtype=np.float32) | |
dimension = embeddings.shape[1] | |
index = faiss.IndexFlatL2(dimension) | |
index.add(embeddings) | |
return docs_df, index | |
docs_df, index = load_data_and_index() | |
# Load SentenceTransformer | |
minilm = SentenceTransformer('all-MiniLM-L6-v2') | |
# Configure Gemini API using Hugging Face Secrets | |
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") | |
if not GEMINI_API_KEY: | |
raise ValueError("Gemini API key not found. Please set it in Hugging Face Spaces secrets.") | |
genai.configure(api_key=GEMINI_API_KEY) | |
model = genai.GenerativeModel('gemini-2.0-flash') | |
# Preprocess text function | |
def preprocess_text(text): | |
text = text.lower() | |
text = text.replace('\n', ' ').replace('\t', ' ') | |
text = re.sub(r'[^\w\s.,;:>-]', ' ', text) | |
text = ' '.join(text.split()).strip() | |
return text | |
# Retrieve documents | |
def retrieve_docs(query, k=5): | |
query_embedding = minilm.encode([query], show_progress_bar=False)[0].astype(np.float32) | |
distances, indices = index.search(np.array([query_embedding]), k) | |
retrieved_docs = docs_df.iloc[indices[0]][['label', 'text', 'source']] | |
retrieved_docs['distance'] = distances[0] | |
return retrieved_docs | |
# RAG pipeline integrated into respond function | |
def respond(message, system_message, max_tokens, temperature): | |
# Preprocess the user message | |
preprocessed_query = preprocess_text(message) | |
# Retrieve relevant documents | |
retrieved_docs = retrieve_docs(preprocessed_query, k=5) | |
context = "\n".join(retrieved_docs['text'].tolist()) | |
# Construct the prompt with system message and RAG context, asking for structured response | |
prompt = f"{system_message}\n\n" | |
prompt += ( | |
f"Query: {message}\n" | |
f"Relevant Context: {context}\n" | |
f"Generate a short, concise response to the query based only on the provided context. " | |
f"Format the response as a structured with headings and information write in the form of points not paragraph" | |
) | |
# Generate response with Gemini | |
response = model.generate_content( | |
prompt, | |
generation_config=genai.types.GenerationConfig( | |
max_output_tokens=max_tokens, | |
temperature=temperature | |
) | |
) | |
answer = response.text.strip() | |
if not answer.endswith('.'): | |
last_period = answer.rfind('.') | |
if last_period != -1: | |
answer = answer[:last_period + 1] | |
else: | |
answer += "." | |
return answer | |
# Simple Gradio Interface | |
def chatbot_interface(message, system_message, max_tokens, temperature): | |
return respond(message, system_message, max_tokens, temperature) | |
demo = gr.Interface( | |
fn=chatbot_interface, | |
inputs=[ | |
gr.Textbox(label="Your Query", placeholder="Enter your medical question here..."), | |
], | |
outputs=gr.Textbox(label="Response"), | |
title="π₯ Medical Chat Assistant", | |
description="A simple medical assistant that diagnoses patient queries using AI and past records, providing structured responses." | |
) | |
if __name__ == "__main__": | |
demo.launch() |