Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,76 +7,92 @@ import google.generativeai as genai
|
|
7 |
import re
|
8 |
import os
|
9 |
|
10 |
-
# Load
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
-
docs_df, index =
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
#
|
30 |
-
def
|
31 |
text = text.lower()
|
32 |
-
text =
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
# Retrieve
|
36 |
-
def
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
# RAG
|
42 |
-
def
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
f"
|
54 |
-
f"
|
55 |
-
f"
|
56 |
-
f"
|
57 |
-
f"- End with a short, clear recommendation (if context permits).\n"
|
58 |
-
f"- Avoid medical advice unless the context contains it."
|
59 |
)
|
60 |
-
|
61 |
-
|
|
|
62 |
prompt,
|
63 |
generation_config=genai.types.GenerationConfig(
|
64 |
max_output_tokens=max_tokens,
|
65 |
-
temperature=
|
66 |
)
|
67 |
)
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
# Gradio interface
|
71 |
demo = gr.Interface(
|
72 |
-
fn=
|
73 |
inputs=[
|
74 |
-
gr.Textbox(label="
|
75 |
],
|
76 |
-
outputs=gr.Textbox(label="
|
77 |
-
title="
|
78 |
-
description="
|
79 |
)
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
-
demo.launch()
|
|
|
7 |
import re
|
8 |
import os
|
9 |
|
10 |
+
# Load data and FAISS index
|
11 |
+
def load_data_and_index():
|
12 |
+
docs_df = pd.read_pickle("data.pkl") # Adjust path for HF Spaces
|
13 |
+
embeddings = np.array(docs_df['embeddings'].tolist(), dtype=np.float32)
|
14 |
+
dimension = embeddings.shape[1]
|
15 |
+
index = faiss.IndexFlatL2(dimension)
|
16 |
+
index.add(embeddings)
|
17 |
+
return docs_df, index
|
18 |
|
19 |
+
docs_df, index = load_data_and_index()
|
20 |
|
21 |
+
# Load SentenceTransformer
|
22 |
+
minilm = SentenceTransformer('all-MiniLM-L6-v2')
|
23 |
|
24 |
+
# Configure Gemini API using Hugging Face Secrets
|
25 |
+
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
26 |
+
if not GEMINI_API_KEY:
|
27 |
+
raise ValueError("Gemini API key not found. Please set it in Hugging Face Spaces secrets.")
|
28 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
29 |
+
model = genai.GenerativeModel('gemini-2.0-flash')
|
30 |
|
31 |
+
# Preprocess text function
|
32 |
+
def preprocess_text(text):
|
33 |
text = text.lower()
|
34 |
+
text = text.replace('\n', ' ').replace('\t', ' ')
|
35 |
+
text = re.sub(r'[^\w\s.,;:>-]', ' ', text)
|
36 |
+
text = ' '.join(text.split()).strip()
|
37 |
+
return text
|
38 |
|
39 |
+
# Retrieve documents
|
40 |
+
def retrieve_docs(query, k=5):
|
41 |
+
query_embedding = minilm.encode([query], show_progress_bar=False)[0].astype(np.float32)
|
42 |
+
distances, indices = index.search(np.array([query_embedding]), k)
|
43 |
+
retrieved_docs = docs_df.iloc[indices[0]][['label', 'text', 'source']]
|
44 |
+
retrieved_docs['distance'] = distances[0]
|
45 |
+
return retrieved_docs
|
46 |
|
47 |
+
# RAG pipeline integrated into respond function
|
48 |
+
def respond(message, system_message, max_tokens, temperature):
|
49 |
+
# Preprocess the user message
|
50 |
+
preprocessed_query = preprocess_text(message)
|
51 |
|
52 |
+
# Retrieve relevant documents
|
53 |
+
retrieved_docs = retrieve_docs(preprocessed_query, k=5)
|
54 |
+
context = "\n".join(retrieved_docs['text'].tolist())
|
55 |
+
|
56 |
+
# Construct the prompt with system message and RAG context, asking for structured response
|
57 |
+
prompt = f"{system_message}\n\n"
|
58 |
+
prompt += (
|
59 |
+
f"Query: {message}\n"
|
60 |
+
f"Relevant Context: {context}\n"
|
61 |
+
f"Generate a short, concise response to the query based only on the provided context. "
|
62 |
+
f"Format the response as a structured with headings and information write in the form of points not paragraph"
|
|
|
|
|
63 |
)
|
64 |
+
|
65 |
+
# Generate response with Gemini
|
66 |
+
response = model.generate_content(
|
67 |
prompt,
|
68 |
generation_config=genai.types.GenerationConfig(
|
69 |
max_output_tokens=max_tokens,
|
70 |
+
temperature=temperature
|
71 |
)
|
72 |
)
|
73 |
+
answer = response.text.strip()
|
74 |
+
if not answer.endswith('.'):
|
75 |
+
last_period = answer.rfind('.')
|
76 |
+
if last_period != -1:
|
77 |
+
answer = answer[:last_period + 1]
|
78 |
+
else:
|
79 |
+
answer += "."
|
80 |
+
|
81 |
+
return answer
|
82 |
+
|
83 |
+
# Simple Gradio Interface
|
84 |
+
def chatbot_interface(message, system_message, max_tokens, temperature):
|
85 |
+
return respond(message, system_message, max_tokens, temperature)
|
86 |
|
|
|
87 |
demo = gr.Interface(
|
88 |
+
fn=chatbot_interface,
|
89 |
inputs=[
|
90 |
+
gr.Textbox(label="Your Query", placeholder="Enter your medical question here..."),
|
91 |
],
|
92 |
+
outputs=gr.Textbox(label="Response"),
|
93 |
+
title="🏥 Medical Chat Assistant",
|
94 |
+
description="A simple medical assistant that diagnoses patient queries using AI and past records, providing structured responses."
|
95 |
)
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
+
demo.launch()
|