Clinical_RAG / app.py
burhan112's picture
Update app.py
a9d2dec verified
raw
history blame
6.25 kB
import gradio as gr
import faiss
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import google.generativeai as genai
import re
import os
# Load data and FAISS index
def load_data_and_index():
docs_df = pd.read_pickle("docs_with_embeddings (1).pkl") # Adjust path for HF Spaces
embeddings = np.array(docs_df['embeddings'].tolist(), dtype=np.float32)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)
return docs_df, index
docs_df, index = load_data_and_index()
# Load SentenceTransformer
minilm = SentenceTransformer('all-MiniLM-L6-v2')
# Configure Gemini API using Hugging Face Secrets
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise ValueError("Gemini API key not found. Please set it in Hugging Face Spaces secrets.")
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-2.0-flash')
# Preprocess text function
def preprocess_text(text):
text = text.lower()
text = text.replace('\n', ' ').replace('\t', ' ')
text = re.sub(r'[^\w\s.,;:>-]', ' ', text)
text = ' '.join(text.split()).strip()
return text
# Retrieve documents
def retrieve_docs(query, k=5):
query_embedding = minilm.encode([query], show_progress_bar=False)[0].astype(np.float32)
distances, indices = index.search(np.array([query_embedding]), k)
retrieved_docs = docs_df.iloc[indices[0]][['label', 'text', 'source']]
retrieved_docs['distance'] = distances[0]
return retrieved_docs
# Parse response into structured sections
def parse_response(response_text):
sections = {
"Symptoms": [],
"Signs": [],
"Risk Factors": [],
"Diagnostic Criteria": [],
"Other": []
}
# Simple regex-based parsing (adjust based on your Gemini output format)
lines = response_text.split('\n')
current_section = "Other"
for line in lines:
line = line.strip()
if line.lower().startswith("symptoms:"):
current_section = "Symptoms"
elif line.lower().startswith("signs:"):
current_section = "Signs"
elif line.lower().startswith("risk factors") or line.lower().startswith("past medical history:"):
current_section = "Risk Factors"
elif line.lower().startswith("diagnostic criteria:"):
current_section = "Diagnostic Criteria"
elif line and not line.startswith((' ', '\t')) and ':' in line:
current_section = "Other"
if line and not line.endswith(':'):
sections[current_section].append(line)
return sections
# Respond function with generic HTML formatting
def respond(message, system_message, max_tokens, temperature, top_p):
# Preprocess the user message
preprocessed_query = preprocess_text(message)
# Retrieve relevant documents
retrieved_docs = retrieve_docs(preprocessed_query, k=5)
context = "\n".join(retrieved_docs['text'].tolist())
# Construct the prompt with system message and RAG context
prompt = f"{system_message}\n\n"
prompt += (
f"Query: {message}\n"
f"Relevant Context: {context}\n"
f"Generate a concise response to the query based only on the provided context. "
f"Structure the response with clear sections like 'Symptoms:', 'Signs:', 'Risk Factors:', and 'Diagnostic Criteria:' where applicable."
)
# Generate response with Gemini
response = model.generate_content(
prompt,
generation_config=genai.types.GenerationConfig(
max_output_tokens=max_tokens,
temperature=temperature
)
)
answer = response.text.strip()
# Parse the response into sections
sections = parse_response(answer)
# Format the response into HTML with CSS styling
html_response = """
<style>
.diagnosis-container { font-family: Arial, sans-serif; line-height: 1.6; padding: 15px; max-width: 800px; margin: auto; }
h2 { color: #2c3e50; font-size: 24px; margin-bottom: 15px; border-bottom: 2px solid #2980b9; padding-bottom: 5px; }
h3 { color: #2980b9; font-size: 18px; margin-top: 15px; margin-bottom: 8px; }
ul { margin: 0; padding-left: 25px; }
li { margin-bottom: 6px; color: #34495e; }
p { margin: 5px 0; color: #34495e; }
</style>
<div class="diagnosis-container">
<h2>AI Response</h2>
<p>Based on the provided context, here is the information relevant to your query:</p>
"""
# Add sections dynamically
for section, items in sections.items():
if items: # Only include sections that have content
html_response += f"<h3>{section}</h3>"
html_response += "<ul>"
for item in items:
# Remove section prefix if present (e.g., "Symptoms:" from the first line)
cleaned_item = re.sub(rf"^{section}:", "", item, flags=re.IGNORECASE).strip()
html_response += f"<li>{cleaned_item}</li>"
html_response += "</ul>"
html_response += "</div>"
return html_response
# Simple Gradio Interface with HTML output
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(label="Your Query", placeholder="Enter your medical question here (e.g., diabetes, heart failure)..."),
gr.Textbox(
value="You are a medical AI assistant diagnosing patients based on their query, using relevant context from past records of other patients.",
label="System Message"
),
gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max New Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.75, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)", # Included but not used by Gemini
),
],
outputs=gr.HTML(label="Diagnosis"),
title="πŸ₯ Medical Query Assistant",
description="A medical assistant that diagnoses patient queries using AI and past records, with styled output for any condition."
)
if __name__ == "__main__":
demo.launch()