Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import os
|
|
9 |
|
10 |
# Load data and FAISS index
|
11 |
def load_data_and_index():
|
12 |
-
docs_df = pd.read_pickle("
|
13 |
embeddings = np.array(docs_df['embeddings'].tolist(), dtype=np.float32)
|
14 |
dimension = embeddings.shape[1]
|
15 |
index = faiss.IndexFlatL2(dimension)
|
@@ -44,7 +44,38 @@ def retrieve_docs(query, k=5):
|
|
44 |
retrieved_docs['distance'] = distances[0]
|
45 |
return retrieved_docs
|
46 |
|
47 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def respond(message, system_message, max_tokens, temperature, top_p):
|
49 |
# Preprocess the user message
|
50 |
preprocessed_query = preprocess_text(message)
|
@@ -58,7 +89,8 @@ def respond(message, system_message, max_tokens, temperature, top_p):
|
|
58 |
prompt += (
|
59 |
f"Query: {message}\n"
|
60 |
f"Relevant Context: {context}\n"
|
61 |
-
f"Generate a
|
|
|
62 |
)
|
63 |
|
64 |
# Generate response with Gemini
|
@@ -71,48 +103,34 @@ def respond(message, system_message, max_tokens, temperature, top_p):
|
|
71 |
)
|
72 |
answer = response.text.strip()
|
73 |
|
|
|
|
|
|
|
74 |
# Format the response into HTML with CSS styling
|
75 |
html_response = """
|
76 |
<style>
|
77 |
-
.diagnosis-container { font-family: Arial, sans-serif; line-height: 1.6; padding:
|
78 |
-
h2 { color: #2c3e50; font-size:
|
79 |
-
h3 { color: #2980b9; font-size:
|
80 |
-
ul { margin: 0; padding-left:
|
81 |
-
li { margin-bottom:
|
82 |
-
p { margin: 5px 0; }
|
83 |
</style>
|
84 |
<div class="diagnosis-container">
|
85 |
-
<h2>
|
|
|
86 |
"""
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
<h3>Signs</h3>
|
99 |
-
<ul>
|
100 |
-
<li>Elevated jugular venous pressure (markedly elevated JVP)</li>
|
101 |
-
</ul>
|
102 |
-
<h3>Risk Factors/Past Medical History</h3>
|
103 |
-
<ul>
|
104 |
-
<li>Coronary artery disease (CAD s/p CABG)</li>
|
105 |
-
<li>Arrhythmias (Paroxysmal atrial fibrillation)</li>
|
106 |
-
<li>Hypertension</li>
|
107 |
-
</ul>
|
108 |
-
<h3>Diagnostic Criteria</h3>
|
109 |
-
<ul>
|
110 |
-
<li>Elevated BNP</li>
|
111 |
-
</ul>
|
112 |
-
"""
|
113 |
-
else:
|
114 |
-
# Fallback for other queries
|
115 |
-
html_response += f"<p>{answer}</p>"
|
116 |
|
117 |
html_response += "</div>"
|
118 |
return html_response
|
@@ -121,7 +139,7 @@ def respond(message, system_message, max_tokens, temperature, top_p):
|
|
121 |
demo = gr.Interface(
|
122 |
fn=respond,
|
123 |
inputs=[
|
124 |
-
gr.Textbox(label="Your Query", placeholder="Enter your medical question here (e.g., heart failure)..."),
|
125 |
gr.Textbox(
|
126 |
value="You are a medical AI assistant diagnosing patients based on their query, using relevant context from past records of other patients.",
|
127 |
label="System Message"
|
@@ -137,8 +155,8 @@ demo = gr.Interface(
|
|
137 |
),
|
138 |
],
|
139 |
outputs=gr.HTML(label="Diagnosis"),
|
140 |
-
title="🏥 Medical Assistant",
|
141 |
-
description="A
|
142 |
)
|
143 |
|
144 |
if __name__ == "__main__":
|
|
|
9 |
|
10 |
# Load data and FAISS index
|
11 |
def load_data_and_index():
|
12 |
+
docs_df = pd.read_pickle("docs_with_embeddings (1).pkl") # Adjust path for HF Spaces
|
13 |
embeddings = np.array(docs_df['embeddings'].tolist(), dtype=np.float32)
|
14 |
dimension = embeddings.shape[1]
|
15 |
index = faiss.IndexFlatL2(dimension)
|
|
|
44 |
retrieved_docs['distance'] = distances[0]
|
45 |
return retrieved_docs
|
46 |
|
47 |
+
# Parse response into structured sections
|
48 |
+
def parse_response(response_text):
|
49 |
+
sections = {
|
50 |
+
"Symptoms": [],
|
51 |
+
"Signs": [],
|
52 |
+
"Risk Factors": [],
|
53 |
+
"Diagnostic Criteria": [],
|
54 |
+
"Other": []
|
55 |
+
}
|
56 |
+
|
57 |
+
# Simple regex-based parsing (adjust based on your Gemini output format)
|
58 |
+
lines = response_text.split('\n')
|
59 |
+
current_section = "Other"
|
60 |
+
|
61 |
+
for line in lines:
|
62 |
+
line = line.strip()
|
63 |
+
if line.lower().startswith("symptoms:"):
|
64 |
+
current_section = "Symptoms"
|
65 |
+
elif line.lower().startswith("signs:"):
|
66 |
+
current_section = "Signs"
|
67 |
+
elif line.lower().startswith("risk factors") or line.lower().startswith("past medical history:"):
|
68 |
+
current_section = "Risk Factors"
|
69 |
+
elif line.lower().startswith("diagnostic criteria:"):
|
70 |
+
current_section = "Diagnostic Criteria"
|
71 |
+
elif line and not line.startswith((' ', '\t')) and ':' in line:
|
72 |
+
current_section = "Other"
|
73 |
+
if line and not line.endswith(':'):
|
74 |
+
sections[current_section].append(line)
|
75 |
+
|
76 |
+
return sections
|
77 |
+
|
78 |
+
# Respond function with generic HTML formatting
|
79 |
def respond(message, system_message, max_tokens, temperature, top_p):
|
80 |
# Preprocess the user message
|
81 |
preprocessed_query = preprocess_text(message)
|
|
|
89 |
prompt += (
|
90 |
f"Query: {message}\n"
|
91 |
f"Relevant Context: {context}\n"
|
92 |
+
f"Generate a concise response to the query based only on the provided context. "
|
93 |
+
f"Structure the response with clear sections like 'Symptoms:', 'Signs:', 'Risk Factors:', and 'Diagnostic Criteria:' where applicable."
|
94 |
)
|
95 |
|
96 |
# Generate response with Gemini
|
|
|
103 |
)
|
104 |
answer = response.text.strip()
|
105 |
|
106 |
+
# Parse the response into sections
|
107 |
+
sections = parse_response(answer)
|
108 |
+
|
109 |
# Format the response into HTML with CSS styling
|
110 |
html_response = """
|
111 |
<style>
|
112 |
+
.diagnosis-container { font-family: Arial, sans-serif; line-height: 1.6; padding: 15px; max-width: 800px; margin: auto; }
|
113 |
+
h2 { color: #2c3e50; font-size: 24px; margin-bottom: 15px; border-bottom: 2px solid #2980b9; padding-bottom: 5px; }
|
114 |
+
h3 { color: #2980b9; font-size: 18px; margin-top: 15px; margin-bottom: 8px; }
|
115 |
+
ul { margin: 0; padding-left: 25px; }
|
116 |
+
li { margin-bottom: 6px; color: #34495e; }
|
117 |
+
p { margin: 5px 0; color: #34495e; }
|
118 |
</style>
|
119 |
<div class="diagnosis-container">
|
120 |
+
<h2>AI Response</h2>
|
121 |
+
<p>Based on the provided context, here is the information relevant to your query:</p>
|
122 |
"""
|
123 |
|
124 |
+
# Add sections dynamically
|
125 |
+
for section, items in sections.items():
|
126 |
+
if items: # Only include sections that have content
|
127 |
+
html_response += f"<h3>{section}</h3>"
|
128 |
+
html_response += "<ul>"
|
129 |
+
for item in items:
|
130 |
+
# Remove section prefix if present (e.g., "Symptoms:" from the first line)
|
131 |
+
cleaned_item = re.sub(rf"^{section}:", "", item, flags=re.IGNORECASE).strip()
|
132 |
+
html_response += f"<li>{cleaned_item}</li>"
|
133 |
+
html_response += "</ul>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
html_response += "</div>"
|
136 |
return html_response
|
|
|
139 |
demo = gr.Interface(
|
140 |
fn=respond,
|
141 |
inputs=[
|
142 |
+
gr.Textbox(label="Your Query", placeholder="Enter your medical question here (e.g., diabetes, heart failure)..."),
|
143 |
gr.Textbox(
|
144 |
value="You are a medical AI assistant diagnosing patients based on their query, using relevant context from past records of other patients.",
|
145 |
label="System Message"
|
|
|
155 |
),
|
156 |
],
|
157 |
outputs=gr.HTML(label="Diagnosis"),
|
158 |
+
title="🏥 Medical Query Assistant",
|
159 |
+
description="A medical assistant that diagnoses patient queries using AI and past records, with styled output for any condition."
|
160 |
)
|
161 |
|
162 |
if __name__ == "__main__":
|