pdf2markdown / app.py
broadfield-dev's picture
Update app.py
9bc382d verified
raw
history blame
17.6 kB
import os
import io
import re
import logging
import subprocess
from datetime import datetime
import urllib.parse
import tempfile
from flask import Flask, request, render_template, redirect, url_for
from werkzeug.utils import secure_filename # For secure file handling
import requests
import pdfplumber
from pdf2image import convert_from_path, convert_from_bytes
import pytesseract
from PIL import Image
from huggingface_hub import HfApi, create_repo, HfHubHTTPError
# --- Flask App Initialization ---
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = tempfile.gettempdir() # Use system temp dir
app.config['MAX_CONTENT_LENGTH'] = 30 * 1024 * 1024 # 30 MB limit for uploads
# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# --- Hugging Face Configuration ---
HF_TOKEN = os.getenv("HF_TOKEN")
HF_DATASET_REPO_NAME = os.getenv("HF_DATASET_REPO_NAME", "pdf-images-extracted") # Allow override via env var
hf_api = HfApi()
# --- PDF Processing Helper Functions (Adapted from Gradio version) ---
def check_poppler():
try:
result = subprocess.run(["pdftoppm", "-v"], capture_output=True, text=True, check=False)
version_info_log = result.stderr.strip() if result.stderr else result.stdout.strip()
if version_info_log:
logger.info(f"Poppler version check: {version_info_log.splitlines()[0] if version_info_log else 'No version output'}")
else:
logger.info("Poppler 'pdftoppm -v' ran. Assuming Poppler is present.")
return True
except FileNotFoundError:
logger.error("Poppler (pdftoppm command) not found. Ensure poppler-utils is installed and in PATH.")
return False
except Exception as e:
logger.error(f"An unexpected error occurred during Poppler check: {str(e)}")
return False
def ensure_hf_dataset():
if not HF_TOKEN:
logger.warning("HF_TOKEN is not set. Cannot ensure Hugging Face dataset. Image uploads will fail.")
return "Error: HF_TOKEN is not set. Please configure it in Space secrets for image uploads."
try:
repo_id_obj = create_repo(repo_id=HF_DATASET_REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
logger.info(f"Dataset repo ensured: {repo_id_obj.repo_id}")
return repo_id_obj.repo_id
except HfHubHTTPError as e:
if e.response.status_code == 409: # Conflict, repo already exists
logger.info(f"Dataset repo '{HF_DATASET_REPO_NAME}' already exists.")
return f"{hf_api.whoami(token=HF_TOKEN)['name']}/{HF_DATASET_REPO_NAME}" # Construct repo_id
logger.error(f"Hugging Face dataset error (HTTP {e.response.status_code}): {str(e)}")
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
except Exception as e:
logger.error(f"Hugging Face dataset error: {str(e)}", exc_info=True)
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
def upload_image_to_hf(image_pil, filename_base):
repo_id_or_error = ensure_hf_dataset()
if isinstance(repo_id_or_error, str) and repo_id_or_error.startswith("Error"):
return repo_id_or_error
repo_id = repo_id_or_error
temp_image_path = None
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
repo_filename = f"images/{filename_base}_{timestamp}.png" # Path in repo
# Save PIL image to a temporary file to upload
with tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=app.config['UPLOAD_FOLDER']) as tmp_file:
temp_image_path = tmp_file.name
image_pil.save(temp_image_path, format="PNG")
logger.info(f"Attempting to upload {temp_image_path} to {repo_id}/{repo_filename}")
file_url = hf_api.upload_file(
path_or_fileobj=temp_image_path,
path_in_repo=repo_filename,
repo_id=repo_id,
repo_type="dataset",
token=HF_TOKEN
)
logger.info(f"Successfully uploaded image: {file_url}")
return file_url
except Exception as e:
logger.error(f"Image upload error for {filename_base}: {str(e)}", exc_info=True)
return f"Error uploading image {filename_base}: {str(e)}"
finally:
if temp_image_path and os.path.exists(temp_image_path):
try:
os.remove(temp_image_path)
except OSError as ose:
logger.error(f"Error removing temp image file {temp_image_path}: {ose}")
def extract_text_from_pdf(pdf_input_source): # pdf_input_source is URL string or local file path
try:
pdf_file_like_object = None
if isinstance(pdf_input_source, str) and pdf_input_source.startswith(('http://', 'https://')):
logger.info(f"Fetching PDF from URL for text extraction: {pdf_input_source}")
response = requests.get(pdf_input_source, stream=True, timeout=30)
response.raise_for_status()
pdf_file_like_object = io.BytesIO(response.content)
logger.info("PDF downloaded successfully from URL.")
elif isinstance(pdf_input_source, str) and os.path.exists(pdf_input_source): # Local file path
logger.info(f"Processing local PDF file for text extraction: {pdf_input_source}")
# pdfplumber.open can take a path directly
pdf_file_like_object = pdf_input_source
else:
logger.error(f"Invalid pdf_input_source for text extraction: {pdf_input_source}")
return "Error: Invalid input for PDF text extraction (must be URL or valid file path)."
with pdfplumber.open(pdf_file_like_object) as pdf:
full_text = ""
for i, page in enumerate(pdf.pages):
page_text = page.extract_text(layout=True, x_density=1, y_density=1) or ""
full_text += page_text + "\n\n"
tables = page.extract_tables()
if tables:
for table_data in tables:
if table_data:
header = [" | ".join(str(cell) if cell is not None else "" for cell in table_data[0])]
separator = [" | ".join(["---"] * len(table_data[0]))]
body = [" | ".join(str(cell) if cell is not None else "" for cell in row) for row in table_data[1:]]
table_md_lines = header + separator + body
full_text += f"**Table:**\n" + "\n".join(table_md_lines) + "\n\n"
logger.info("Text and table extraction successful.")
return full_text.strip()
except requests.RequestException as e:
logger.error(f"URL fetch error for text extraction: {str(e)}", exc_info=True)
return f"Error fetching PDF from URL: {str(e)}"
except Exception as e:
logger.error(f"Text extraction error: {str(e)}", exc_info=True)
return f"Error extracting text: {str(e)}"
def extract_images_from_pdf(pdf_input_source): # pdf_input_source is URL string or local file path
if not check_poppler():
return "Error: poppler-utils not found or not working correctly. Image extraction depends on it."
images_pil = []
try:
if isinstance(pdf_input_source, str) and pdf_input_source.startswith(('http://', 'https://')):
logger.info(f"Fetching PDF from URL for image extraction: {pdf_input_source}")
response = requests.get(pdf_input_source, stream=True, timeout=30)
response.raise_for_status()
logger.info("PDF downloaded successfully from URL, converting to images.")
images_pil = convert_from_bytes(response.content, dpi=200)
elif isinstance(pdf_input_source, str) and os.path.exists(pdf_input_source): # Local file path
logger.info(f"Processing local PDF file for image extraction: {pdf_input_source}")
images_pil = convert_from_path(pdf_input_source, dpi=200)
else:
logger.error(f"Invalid pdf_input_source for image extraction: {pdf_input_source}")
return "Error: Invalid input for PDF image extraction (must be URL or valid file path)."
logger.info(f"Successfully extracted {len(images_pil)} image(s) from PDF.")
return images_pil
except requests.RequestException as e:
logger.error(f"URL fetch error for image extraction: {str(e)}", exc_info=True)
return f"Error fetching PDF from URL for image extraction: {str(e)}"
except Exception as e:
logger.error(f"Image extraction error: {str(e)}", exc_info=True)
return f"Error extracting images: {str(e)}"
def format_to_markdown(text_content, images_input):
markdown_output = "# Extracted PDF Content\n\n"
if text_content.startswith("Error"): # If text extraction itself failed
markdown_output += f"**Text Extraction Note:**\n{text_content}\n\n"
else:
text_content = re.sub(r'\n\s*\n+', '\n\n', text_content.strip())
lines = text_content.split('\n')
is_in_list = False
for line_text in lines:
line_stripped = line_text.strip()
if not line_stripped:
markdown_output += "\n"
is_in_list = False
continue
list_match = re.match(r'^\s*(?:(?:\d+\.)|[*+-])\s+(.*)', line_stripped)
is_heading_candidate = line_stripped.isupper() and 5 < len(line_stripped) < 100
if is_heading_candidate and not list_match:
markdown_output += f"## {line_stripped}\n\n"
is_in_list = False
elif list_match:
list_item_text = list_match.group(1)
markdown_output += f"- {list_item_text}\n"
is_in_list = True
else:
if is_in_list: markdown_output += "\n"
markdown_output += f"{line_text}\n\n"
is_in_list = False
markdown_output = re.sub(r'\n\s*\n+', '\n\n', markdown_output.strip()) + "\n\n"
if isinstance(images_input, list) and images_input:
markdown_output += "## Extracted Images\n\n"
if not HF_TOKEN:
markdown_output += "**Note:** `HF_TOKEN` not set. Images were extracted but not uploaded to Hugging Face Hub.\n\n"
for i, img_pil in enumerate(images_input):
ocr_text = ""
try:
ocr_text = pytesseract.image_to_string(img_pil).strip()
logger.info(f"OCR for image {i+1} successful.")
except Exception as ocr_e:
logger.error(f"OCR error for image {i+1}: {str(ocr_e)}")
ocr_text = f"OCR failed: {str(ocr_e)}"
if HF_TOKEN: # Only attempt upload if token is present
image_filename_base = f"extracted_image_{i+1}"
image_url_or_error = upload_image_to_hf(img_pil, image_filename_base)
if isinstance(image_url_or_error, str) and not image_url_or_error.startswith("Error"):
markdown_output += f"![Image {i+1}]({image_url_or_error})\n"
else:
markdown_output += f"**Image {i+1} (Upload Error):** {str(image_url_or_error)}\n\n"
else: # No token, show placeholder or local info if we were saving them locally
markdown_output += f"**Image {i+1} (not uploaded due to missing HF_TOKEN)**\n"
if ocr_text:
markdown_output += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
elif isinstance(images_input, str) and images_input.startswith("Error"):
markdown_output += f"## Image Extraction Note\n\n{images_input}\n\n"
return markdown_output.strip()
# --- Flask Routes ---
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/process', methods=['POST'])
def process_pdf_route():
pdf_file = request.files.get('pdf_file')
pdf_url = request.form.get('pdf_url', '').strip()
status_message = "Starting PDF processing..."
error_message = None
markdown_output = None
temp_pdf_path = None
pdf_input_source = None # This will be a URL string or a local file path
try:
if pdf_file and pdf_file.filename:
if not pdf_file.filename.lower().endswith('.pdf'):
raise ValueError("Uploaded file is not a PDF.")
filename = secure_filename(pdf_file.filename)
# Save to a temporary file
fd, temp_pdf_path = tempfile.mkstemp(suffix=".pdf", prefix="upload_", dir=app.config['UPLOAD_FOLDER'])
os.close(fd) # close file descriptor from mkstemp
pdf_file.save(temp_pdf_path)
logger.info(f"Uploaded PDF saved to temporary path: {temp_pdf_path}")
pdf_input_source = temp_pdf_path
status_message = f"Processing uploaded PDF: {filename}"
elif pdf_url:
pdf_url = urllib.parse.unquote(pdf_url)
# Basic URL validation
if not (pdf_url.startswith('http://') or pdf_url.startswith('https://')):
raise ValueError("Invalid URL scheme. Must be http or https.")
if not pdf_url.lower().endswith('.pdf'):
logger.warning(f"URL {pdf_url} does not end with .pdf. Proceeding with caution.")
# Allow proceeding but log warning, actual check is content-type or processing error
# Quick check with HEAD request (optional, but good practice)
try:
head_resp = requests.head(pdf_url, allow_redirects=True, timeout=10)
head_resp.raise_for_status()
content_type = head_resp.headers.get('content-type', '').lower()
if 'application/pdf' not in content_type:
logger.warning(f"URL {pdf_url} content-type is '{content_type}', not 'application/pdf'.")
# Depending on strictness, could raise ValueError here
except requests.RequestException as re:
logger.error(f"Failed HEAD request for URL {pdf_url}: {re}")
# Proceed, main request in extract functions will handle final failure
pdf_input_source = pdf_url
status_message = f"Processing PDF from URL: {pdf_url}"
else:
raise ValueError("No PDF file uploaded and no PDF URL provided.")
# --- Core Processing ---
status_message += "\nExtracting text..."
logger.info(status_message)
extracted_text = extract_text_from_pdf(pdf_input_source)
if isinstance(extracted_text, str) and extracted_text.startswith("Error"):
# Let format_to_markdown handle displaying this error within its structure
logger.error(f"Text extraction resulted in error: {extracted_text}")
status_message += "\nExtracting images..."
logger.info(status_message)
extracted_images = extract_images_from_pdf(pdf_input_source) # list of PIL images or error string
if isinstance(extracted_images, str) and extracted_images.startswith("Error"):
logger.error(f"Image extraction resulted in error: {extracted_images}")
status_message += "\nFormatting to Markdown..."
logger.info(status_message)
markdown_output = format_to_markdown(extracted_text, extracted_images)
status_message = "Processing complete."
if isinstance(extracted_text, str) and extracted_text.startswith("Error"):
status_message += f" (Text extraction issues: {extracted_text.split(':', 1)[1].strip()})"
if isinstance(extracted_images, str) and extracted_images.startswith("Error"):
status_message += f" (Image extraction issues: {extracted_images.split(':', 1)[1].strip()})"
if not HF_TOKEN and isinstance(extracted_images, list) and extracted_images:
status_message += " (Note: HF_TOKEN not set, images not uploaded to Hub)"
except ValueError as ve:
logger.error(f"Input validation error: {str(ve)}")
error_message = str(ve)
status_message = "Processing failed."
except Exception as e:
logger.error(f"An unexpected error occurred during processing: {str(e)}", exc_info=True)
error_message = f"An unexpected error occurred: {str(e)}"
status_message = "Processing failed due to an unexpected error."
finally:
if temp_pdf_path and os.path.exists(temp_pdf_path):
try:
os.remove(temp_pdf_path)
logger.info(f"Removed temporary PDF: {temp_pdf_path}")
except OSError as ose:
logger.error(f"Error removing temporary PDF {temp_pdf_path}: {ose}")
return render_template('index.html',
markdown_output=markdown_output,
status_message=status_message,
error_message=error_message)
# --- Main Execution ---
if __name__ == '__main__':
# This is for local development. For Hugging Face Spaces, Gunicorn is used via Dockerfile CMD.
# Poppler check at startup for local dev convenience
if not check_poppler():
logger.warning("Poppler utilities might not be installed correctly. PDF processing might fail.")
# Ensure UPLOAD_FOLDER exists
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
app.run(host='0.0.0.0', port=int(os.getenv("PORT", 7860)), debug=True)