Spaces:
Sleeping
Sleeping
File size: 17,604 Bytes
9bc382d f86ad35 aec5733 f86ad35 9bc382d 155ac2a 9bc382d 81314aa 155ac2a f86ad35 9bc382d 81314aa 9bc382d f86ad35 9bc382d dc24da7 9bc382d ae3cd0d 9bc382d ae3cd0d 9bc382d dc24da7 ae3cd0d 9bc382d ae3cd0d dc24da7 0dd31f7 9bc382d f86ad35 9bc382d ae3cd0d 9bc382d f86ad35 9bc382d ae3cd0d 9bc382d ae3cd0d 9bc382d f86ad35 9bc382d f86ad35 9bc382d f86ad35 9bc382d ae3cd0d f86ad35 0dd31f7 9bc382d f86ad35 ae3cd0d f86ad35 9bc382d ae3cd0d 9bc382d ae3cd0d 9bc382d f86ad35 9bc382d f86ad35 9bc382d ae3cd0d 9bc382d 0e0f376 ae3cd0d 9bc382d ae3cd0d 9bc382d ae3cd0d 9bc382d aec5733 ae3cd0d 9bc382d ae3cd0d 9bc382d f86ad35 ae3cd0d f86ad35 9bc382d dc24da7 ae3cd0d 9bc382d f86ad35 9bc382d ae3cd0d 9bc382d 0e0f376 9bc382d ae3cd0d 9bc382d f86ad35 ae3cd0d f86ad35 ae3cd0d 9bc382d ae3cd0d 9bc382d f86ad35 9bc382d ae3cd0d 9bc382d ae3cd0d 9bc382d ae3cd0d 9bc382d ae3cd0d 9bc382d f86ad35 9bc382d ae3cd0d 9bc382d 81314aa 9bc382d 81314aa 9bc382d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import os
import io
import re
import logging
import subprocess
from datetime import datetime
import urllib.parse
import tempfile
from flask import Flask, request, render_template, redirect, url_for
from werkzeug.utils import secure_filename # For secure file handling
import requests
import pdfplumber
from pdf2image import convert_from_path, convert_from_bytes
import pytesseract
from PIL import Image
from huggingface_hub import HfApi, create_repo, HfHubHTTPError
# --- Flask App Initialization ---
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = tempfile.gettempdir() # Use system temp dir
app.config['MAX_CONTENT_LENGTH'] = 30 * 1024 * 1024 # 30 MB limit for uploads
# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# --- Hugging Face Configuration ---
HF_TOKEN = os.getenv("HF_TOKEN")
HF_DATASET_REPO_NAME = os.getenv("HF_DATASET_REPO_NAME", "pdf-images-extracted") # Allow override via env var
hf_api = HfApi()
# --- PDF Processing Helper Functions (Adapted from Gradio version) ---
def check_poppler():
try:
result = subprocess.run(["pdftoppm", "-v"], capture_output=True, text=True, check=False)
version_info_log = result.stderr.strip() if result.stderr else result.stdout.strip()
if version_info_log:
logger.info(f"Poppler version check: {version_info_log.splitlines()[0] if version_info_log else 'No version output'}")
else:
logger.info("Poppler 'pdftoppm -v' ran. Assuming Poppler is present.")
return True
except FileNotFoundError:
logger.error("Poppler (pdftoppm command) not found. Ensure poppler-utils is installed and in PATH.")
return False
except Exception as e:
logger.error(f"An unexpected error occurred during Poppler check: {str(e)}")
return False
def ensure_hf_dataset():
if not HF_TOKEN:
logger.warning("HF_TOKEN is not set. Cannot ensure Hugging Face dataset. Image uploads will fail.")
return "Error: HF_TOKEN is not set. Please configure it in Space secrets for image uploads."
try:
repo_id_obj = create_repo(repo_id=HF_DATASET_REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
logger.info(f"Dataset repo ensured: {repo_id_obj.repo_id}")
return repo_id_obj.repo_id
except HfHubHTTPError as e:
if e.response.status_code == 409: # Conflict, repo already exists
logger.info(f"Dataset repo '{HF_DATASET_REPO_NAME}' already exists.")
return f"{hf_api.whoami(token=HF_TOKEN)['name']}/{HF_DATASET_REPO_NAME}" # Construct repo_id
logger.error(f"Hugging Face dataset error (HTTP {e.response.status_code}): {str(e)}")
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
except Exception as e:
logger.error(f"Hugging Face dataset error: {str(e)}", exc_info=True)
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
def upload_image_to_hf(image_pil, filename_base):
repo_id_or_error = ensure_hf_dataset()
if isinstance(repo_id_or_error, str) and repo_id_or_error.startswith("Error"):
return repo_id_or_error
repo_id = repo_id_or_error
temp_image_path = None
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
repo_filename = f"images/{filename_base}_{timestamp}.png" # Path in repo
# Save PIL image to a temporary file to upload
with tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=app.config['UPLOAD_FOLDER']) as tmp_file:
temp_image_path = tmp_file.name
image_pil.save(temp_image_path, format="PNG")
logger.info(f"Attempting to upload {temp_image_path} to {repo_id}/{repo_filename}")
file_url = hf_api.upload_file(
path_or_fileobj=temp_image_path,
path_in_repo=repo_filename,
repo_id=repo_id,
repo_type="dataset",
token=HF_TOKEN
)
logger.info(f"Successfully uploaded image: {file_url}")
return file_url
except Exception as e:
logger.error(f"Image upload error for {filename_base}: {str(e)}", exc_info=True)
return f"Error uploading image {filename_base}: {str(e)}"
finally:
if temp_image_path and os.path.exists(temp_image_path):
try:
os.remove(temp_image_path)
except OSError as ose:
logger.error(f"Error removing temp image file {temp_image_path}: {ose}")
def extract_text_from_pdf(pdf_input_source): # pdf_input_source is URL string or local file path
try:
pdf_file_like_object = None
if isinstance(pdf_input_source, str) and pdf_input_source.startswith(('http://', 'https://')):
logger.info(f"Fetching PDF from URL for text extraction: {pdf_input_source}")
response = requests.get(pdf_input_source, stream=True, timeout=30)
response.raise_for_status()
pdf_file_like_object = io.BytesIO(response.content)
logger.info("PDF downloaded successfully from URL.")
elif isinstance(pdf_input_source, str) and os.path.exists(pdf_input_source): # Local file path
logger.info(f"Processing local PDF file for text extraction: {pdf_input_source}")
# pdfplumber.open can take a path directly
pdf_file_like_object = pdf_input_source
else:
logger.error(f"Invalid pdf_input_source for text extraction: {pdf_input_source}")
return "Error: Invalid input for PDF text extraction (must be URL or valid file path)."
with pdfplumber.open(pdf_file_like_object) as pdf:
full_text = ""
for i, page in enumerate(pdf.pages):
page_text = page.extract_text(layout=True, x_density=1, y_density=1) or ""
full_text += page_text + "\n\n"
tables = page.extract_tables()
if tables:
for table_data in tables:
if table_data:
header = [" | ".join(str(cell) if cell is not None else "" for cell in table_data[0])]
separator = [" | ".join(["---"] * len(table_data[0]))]
body = [" | ".join(str(cell) if cell is not None else "" for cell in row) for row in table_data[1:]]
table_md_lines = header + separator + body
full_text += f"**Table:**\n" + "\n".join(table_md_lines) + "\n\n"
logger.info("Text and table extraction successful.")
return full_text.strip()
except requests.RequestException as e:
logger.error(f"URL fetch error for text extraction: {str(e)}", exc_info=True)
return f"Error fetching PDF from URL: {str(e)}"
except Exception as e:
logger.error(f"Text extraction error: {str(e)}", exc_info=True)
return f"Error extracting text: {str(e)}"
def extract_images_from_pdf(pdf_input_source): # pdf_input_source is URL string or local file path
if not check_poppler():
return "Error: poppler-utils not found or not working correctly. Image extraction depends on it."
images_pil = []
try:
if isinstance(pdf_input_source, str) and pdf_input_source.startswith(('http://', 'https://')):
logger.info(f"Fetching PDF from URL for image extraction: {pdf_input_source}")
response = requests.get(pdf_input_source, stream=True, timeout=30)
response.raise_for_status()
logger.info("PDF downloaded successfully from URL, converting to images.")
images_pil = convert_from_bytes(response.content, dpi=200)
elif isinstance(pdf_input_source, str) and os.path.exists(pdf_input_source): # Local file path
logger.info(f"Processing local PDF file for image extraction: {pdf_input_source}")
images_pil = convert_from_path(pdf_input_source, dpi=200)
else:
logger.error(f"Invalid pdf_input_source for image extraction: {pdf_input_source}")
return "Error: Invalid input for PDF image extraction (must be URL or valid file path)."
logger.info(f"Successfully extracted {len(images_pil)} image(s) from PDF.")
return images_pil
except requests.RequestException as e:
logger.error(f"URL fetch error for image extraction: {str(e)}", exc_info=True)
return f"Error fetching PDF from URL for image extraction: {str(e)}"
except Exception as e:
logger.error(f"Image extraction error: {str(e)}", exc_info=True)
return f"Error extracting images: {str(e)}"
def format_to_markdown(text_content, images_input):
markdown_output = "# Extracted PDF Content\n\n"
if text_content.startswith("Error"): # If text extraction itself failed
markdown_output += f"**Text Extraction Note:**\n{text_content}\n\n"
else:
text_content = re.sub(r'\n\s*\n+', '\n\n', text_content.strip())
lines = text_content.split('\n')
is_in_list = False
for line_text in lines:
line_stripped = line_text.strip()
if not line_stripped:
markdown_output += "\n"
is_in_list = False
continue
list_match = re.match(r'^\s*(?:(?:\d+\.)|[*+-])\s+(.*)', line_stripped)
is_heading_candidate = line_stripped.isupper() and 5 < len(line_stripped) < 100
if is_heading_candidate and not list_match:
markdown_output += f"## {line_stripped}\n\n"
is_in_list = False
elif list_match:
list_item_text = list_match.group(1)
markdown_output += f"- {list_item_text}\n"
is_in_list = True
else:
if is_in_list: markdown_output += "\n"
markdown_output += f"{line_text}\n\n"
is_in_list = False
markdown_output = re.sub(r'\n\s*\n+', '\n\n', markdown_output.strip()) + "\n\n"
if isinstance(images_input, list) and images_input:
markdown_output += "## Extracted Images\n\n"
if not HF_TOKEN:
markdown_output += "**Note:** `HF_TOKEN` not set. Images were extracted but not uploaded to Hugging Face Hub.\n\n"
for i, img_pil in enumerate(images_input):
ocr_text = ""
try:
ocr_text = pytesseract.image_to_string(img_pil).strip()
logger.info(f"OCR for image {i+1} successful.")
except Exception as ocr_e:
logger.error(f"OCR error for image {i+1}: {str(ocr_e)}")
ocr_text = f"OCR failed: {str(ocr_e)}"
if HF_TOKEN: # Only attempt upload if token is present
image_filename_base = f"extracted_image_{i+1}"
image_url_or_error = upload_image_to_hf(img_pil, image_filename_base)
if isinstance(image_url_or_error, str) and not image_url_or_error.startswith("Error"):
markdown_output += f"\n"
else:
markdown_output += f"**Image {i+1} (Upload Error):** {str(image_url_or_error)}\n\n"
else: # No token, show placeholder or local info if we were saving them locally
markdown_output += f"**Image {i+1} (not uploaded due to missing HF_TOKEN)**\n"
if ocr_text:
markdown_output += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
elif isinstance(images_input, str) and images_input.startswith("Error"):
markdown_output += f"## Image Extraction Note\n\n{images_input}\n\n"
return markdown_output.strip()
# --- Flask Routes ---
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/process', methods=['POST'])
def process_pdf_route():
pdf_file = request.files.get('pdf_file')
pdf_url = request.form.get('pdf_url', '').strip()
status_message = "Starting PDF processing..."
error_message = None
markdown_output = None
temp_pdf_path = None
pdf_input_source = None # This will be a URL string or a local file path
try:
if pdf_file and pdf_file.filename:
if not pdf_file.filename.lower().endswith('.pdf'):
raise ValueError("Uploaded file is not a PDF.")
filename = secure_filename(pdf_file.filename)
# Save to a temporary file
fd, temp_pdf_path = tempfile.mkstemp(suffix=".pdf", prefix="upload_", dir=app.config['UPLOAD_FOLDER'])
os.close(fd) # close file descriptor from mkstemp
pdf_file.save(temp_pdf_path)
logger.info(f"Uploaded PDF saved to temporary path: {temp_pdf_path}")
pdf_input_source = temp_pdf_path
status_message = f"Processing uploaded PDF: {filename}"
elif pdf_url:
pdf_url = urllib.parse.unquote(pdf_url)
# Basic URL validation
if not (pdf_url.startswith('http://') or pdf_url.startswith('https://')):
raise ValueError("Invalid URL scheme. Must be http or https.")
if not pdf_url.lower().endswith('.pdf'):
logger.warning(f"URL {pdf_url} does not end with .pdf. Proceeding with caution.")
# Allow proceeding but log warning, actual check is content-type or processing error
# Quick check with HEAD request (optional, but good practice)
try:
head_resp = requests.head(pdf_url, allow_redirects=True, timeout=10)
head_resp.raise_for_status()
content_type = head_resp.headers.get('content-type', '').lower()
if 'application/pdf' not in content_type:
logger.warning(f"URL {pdf_url} content-type is '{content_type}', not 'application/pdf'.")
# Depending on strictness, could raise ValueError here
except requests.RequestException as re:
logger.error(f"Failed HEAD request for URL {pdf_url}: {re}")
# Proceed, main request in extract functions will handle final failure
pdf_input_source = pdf_url
status_message = f"Processing PDF from URL: {pdf_url}"
else:
raise ValueError("No PDF file uploaded and no PDF URL provided.")
# --- Core Processing ---
status_message += "\nExtracting text..."
logger.info(status_message)
extracted_text = extract_text_from_pdf(pdf_input_source)
if isinstance(extracted_text, str) and extracted_text.startswith("Error"):
# Let format_to_markdown handle displaying this error within its structure
logger.error(f"Text extraction resulted in error: {extracted_text}")
status_message += "\nExtracting images..."
logger.info(status_message)
extracted_images = extract_images_from_pdf(pdf_input_source) # list of PIL images or error string
if isinstance(extracted_images, str) and extracted_images.startswith("Error"):
logger.error(f"Image extraction resulted in error: {extracted_images}")
status_message += "\nFormatting to Markdown..."
logger.info(status_message)
markdown_output = format_to_markdown(extracted_text, extracted_images)
status_message = "Processing complete."
if isinstance(extracted_text, str) and extracted_text.startswith("Error"):
status_message += f" (Text extraction issues: {extracted_text.split(':', 1)[1].strip()})"
if isinstance(extracted_images, str) and extracted_images.startswith("Error"):
status_message += f" (Image extraction issues: {extracted_images.split(':', 1)[1].strip()})"
if not HF_TOKEN and isinstance(extracted_images, list) and extracted_images:
status_message += " (Note: HF_TOKEN not set, images not uploaded to Hub)"
except ValueError as ve:
logger.error(f"Input validation error: {str(ve)}")
error_message = str(ve)
status_message = "Processing failed."
except Exception as e:
logger.error(f"An unexpected error occurred during processing: {str(e)}", exc_info=True)
error_message = f"An unexpected error occurred: {str(e)}"
status_message = "Processing failed due to an unexpected error."
finally:
if temp_pdf_path and os.path.exists(temp_pdf_path):
try:
os.remove(temp_pdf_path)
logger.info(f"Removed temporary PDF: {temp_pdf_path}")
except OSError as ose:
logger.error(f"Error removing temporary PDF {temp_pdf_path}: {ose}")
return render_template('index.html',
markdown_output=markdown_output,
status_message=status_message,
error_message=error_message)
# --- Main Execution ---
if __name__ == '__main__':
# This is for local development. For Hugging Face Spaces, Gunicorn is used via Dockerfile CMD.
# Poppler check at startup for local dev convenience
if not check_poppler():
logger.warning("Poppler utilities might not be installed correctly. PDF processing might fail.")
# Ensure UPLOAD_FOLDER exists
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
app.run(host='0.0.0.0', port=int(os.getenv("PORT", 7860)), debug=True) |