karthikvarunn commited on
Commit
e7ce30c
·
verified ·
1 Parent(s): 5a7855f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -99
app.py CHANGED
@@ -26,103 +26,45 @@ embeddings = VoyageAIEmbeddings(voyage_api_key=voyage_api_key, model="voyage-law
26
  # 🔹 Query Expansion using GPT-4
27
  def expand_query(query):
28
  llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
29
- prompt = f"Rewrite this vague query for searching a document into a more specific one:\nQuery: {query}\nSpecific Query: If it is just 'docs'/'documents' do not rewrite"
30
  refined_query = llm([HumanMessage(content=prompt)]).content.strip()
31
  return refined_query if refined_query else query
32
 
33
  # 🔹 Hybrid Search (TF-IDF + Semantic Retrieval)
34
- # def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fetch_k=50):
35
- # vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
36
- # semantic_results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=fetch_k)
37
-
38
- # all_texts = [doc.page_content for doc in semantic_results]
39
- # vectorizer = TfidfVectorizer(stop_words="english")
40
- # tfidf_matrix = vectorizer.fit_transform(all_texts)
41
- # query_tfidf = vectorizer.transform([query])
42
- # keyword_scores = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
43
-
44
- # combined_results, seen_ids = [], set()
45
- # for i, doc in enumerate(semantic_results):
46
- # doc_id, doc_groups = doc.metadata.get("id"), doc.metadata.get("groups", [])
47
- # semantic_score = float(doc.metadata.get("score", 0))
48
- # keyword_score = float(keyword_scores[i])
49
- # final_score = 0.65 * semantic_score + 0.35 * keyword_score # Hybrid score
50
-
51
- # if doc_id not in seen_ids and any(group in user_groups for group in doc_groups) and final_score > min_score:
52
- # seen_ids.add(doc_id)
53
- # doc.metadata["final_score"] = final_score
54
- # combined_results.append(doc)
55
-
56
- # combined_results.sort(key=lambda x: x.metadata["final_score"], reverse=True)
57
- # return [
58
- # {
59
- # "doc_id": doc.metadata.get("doc_id", "N/A"),
60
- # "chunk_id": doc.metadata.get("id", "N/A"),
61
- # "title": doc.metadata.get("source", "N/A"),
62
- # "text": doc.page_content,
63
- # "page_number": str(doc.metadata.get("page_number", "N/A")),
64
- # "score": str(doc.metadata.get("final_score", "N/A")),
65
- # }
66
- # for doc in combined_results
67
- # ]
68
-
69
  def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fetch_k=50):
70
  vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
71
-
72
- try:
73
-
74
- filtered_results = vector_store.similarity_search(
75
- query="", # Empty query just to fetch all documents
76
- k=fetch_k,
77
- filter={"groups": {"$in": user_groups}}, # Filter for user-specific chunks
78
- )
79
-
80
- if not filtered_results:
81
- print("No results:")
82
- return []
83
- else:
84
- print(filtered_results)
85
-
86
- # **2️⃣ Perform Semantic Search on the Filtered Set**
87
- #semantic_results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=fetch_k)
88
-
89
- # **3️⃣ TF-IDF Keyword Search on Filtered Set**
90
- all_texts = [doc.page_content for doc in filtered_results] # Use filtered docs
91
- vectorizer = TfidfVectorizer(stop_words="english")
92
- tfidf_matrix = vectorizer.fit_transform(all_texts)
93
- query_tfidf = vectorizer.transform([query])
94
- keyword_scores = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
95
-
96
- # **4️⃣ Hybrid Score Calculation**
97
- combined_results, seen_ids = [], set()
98
- for i, doc in enumerate(filtered_results): # Iterate over filtered results
99
- doc_id = doc.metadata.get("id")
100
- semantic_score = float(doc.metadata.get("score", 0))
101
- keyword_score = float(keyword_scores[i])
102
- final_score = 0.65 * semantic_score + 0.35 * keyword_score # Hybrid score
103
-
104
- if doc_id not in seen_ids and final_score > min_score:
105
- seen_ids.add(doc_id)
106
- doc.metadata["final_score"] = final_score
107
- combined_results.append(doc)
108
-
109
- # **5️⃣ Sort Results by Final Score**
110
- combined_results.sort(key=lambda x: x.metadata["final_score"], reverse=True)
111
-
112
- return [
113
- {
114
- "doc_id": doc.metadata.get("doc_id", "N/A"),
115
- "chunk_id": doc.metadata.get("id", "N/A"),
116
- "title": doc.metadata.get("source", "N/A"),
117
- "text": doc.page_content,
118
- "page_number": str(doc.metadata.get("page_number", "N/A")),
119
- "score": str(doc.metadata.get("final_score", "N/A")),
120
- }
121
- for doc in combined_results
122
- ]
123
- except Exception as e:
124
- print(e)
125
- return
126
 
127
  # 🔹 Metadata-Weighted Reranking
128
  def rerank(query, context):
@@ -133,9 +75,9 @@ def rerank(query, context):
133
  final_reranked = []
134
  for entry in reranker.data:
135
  doc, score = entry["document"], float(entry["score"])
136
- # citation_boost = 1.2 if "high_citations" in doc.get("tags", []) else 1.0
137
- # recency_boost = 1.1 if "recent_upload" in doc.get("tags", []) else 1.0
138
- # final_score = score * citation_boost * recency_boost
139
  doc["final_score"] = final_score
140
  final_reranked.append(doc)
141
 
@@ -143,24 +85,23 @@ def rerank(query, context):
143
  return final_reranked
144
 
145
  # 🔹 Intelligent Search Summary Generator
146
- def generate_search_summary(search_results, document_titles, query):
147
  if not search_results:
148
  return "No relevant documents found. Try refining your query."
149
 
150
- num_results = len(document_titles)
151
  doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
152
  doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
153
  relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
154
 
155
  summary_prompt = f"""
156
- Generate a concise 1-3 sentence summary for the document search results found:
157
  - User Query: "{query}"
158
  - Matching Documents: {num_results} found
159
  - Titles: {", ".join(set(doc_titles))}
160
  - Pages Referenced: {", ".join(set(doc_pages))}
161
  - Relevance Scores (0-1): {relevance_scores}
162
  Provide a clear, user-friendly summary with an action suggestion.
163
- If scores are low but the documents are from the same title no need to comment on the scores.
164
  """
165
 
166
  llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
@@ -202,7 +143,7 @@ def complete_workflow(query, user_groups, index_name="briefmeta"):
202
 
203
  document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
204
  formatted_titles = " " + "\n".join(document_titles)
205
- intelligent_search_summary = generate_search_summary(context_data, document_titles, refined_query)
206
 
207
  results = {
208
  "results": [
 
26
  # 🔹 Query Expansion using GPT-4
27
  def expand_query(query):
28
  llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
29
+ prompt = f"Rewrite this vague query into a more specific one:\nQuery: {query}\nSpecific Query:"
30
  refined_query = llm([HumanMessage(content=prompt)]).content.strip()
31
  return refined_query if refined_query else query
32
 
33
  # 🔹 Hybrid Search (TF-IDF + Semantic Retrieval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fetch_k=50):
35
  vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
36
+ semantic_results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=fetch_k)
37
+
38
+ all_texts = [doc.page_content for doc in semantic_results]
39
+ vectorizer = TfidfVectorizer(stop_words="english")
40
+ tfidf_matrix = vectorizer.fit_transform(all_texts)
41
+ query_tfidf = vectorizer.transform([query])
42
+ keyword_scores = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
43
+
44
+ combined_results, seen_ids = [], set()
45
+ for i, doc in enumerate(semantic_results):
46
+ doc_id, doc_groups = doc.metadata.get("id"), doc.metadata.get("groups", [])
47
+ semantic_score = float(doc.metadata.get("score", 0))
48
+ keyword_score = float(keyword_scores[i])
49
+ final_score = 0.7 * semantic_score + 0.3 * keyword_score # Hybrid score
50
+
51
+ if doc_id not in seen_ids and any(group in user_groups for group in doc_groups) and final_score > min_score:
52
+ seen_ids.add(doc_id)
53
+ doc.metadata["final_score"] = final_score
54
+ combined_results.append(doc)
55
+
56
+ combined_results.sort(key=lambda x: x.metadata["final_score"], reverse=True)
57
+ return [
58
+ {
59
+ "doc_id": doc.metadata.get("doc_id", "N/A"),
60
+ "chunk_id": doc.metadata.get("id", "N/A"),
61
+ "title": doc.metadata.get("source", "N/A"),
62
+ "text": doc.page_content,
63
+ "page_number": str(doc.metadata.get("page_number", "N/A")),
64
+ "score": str(doc.metadata.get("final_score", "N/A")),
65
+ }
66
+ for doc in combined_results
67
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  # 🔹 Metadata-Weighted Reranking
70
  def rerank(query, context):
 
75
  final_reranked = []
76
  for entry in reranker.data:
77
  doc, score = entry["document"], float(entry["score"])
78
+ citation_boost = 1.2 if "high_citations" in doc.get("tags", []) else 1.0
79
+ recency_boost = 1.1 if "recent_upload" in doc.get("tags", []) else 1.0
80
+ final_score = score * citation_boost * recency_boost
81
  doc["final_score"] = final_score
82
  final_reranked.append(doc)
83
 
 
85
  return final_reranked
86
 
87
  # 🔹 Intelligent Search Summary Generator
88
+ def generate_search_summary(search_results, query):
89
  if not search_results:
90
  return "No relevant documents found. Try refining your query."
91
 
92
+ num_results = len(search_results)
93
  doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
94
  doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
95
  relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
96
 
97
  summary_prompt = f"""
98
+ Generate a concise 1-3 sentence summary:
99
  - User Query: "{query}"
100
  - Matching Documents: {num_results} found
101
  - Titles: {", ".join(set(doc_titles))}
102
  - Pages Referenced: {", ".join(set(doc_pages))}
103
  - Relevance Scores (0-1): {relevance_scores}
104
  Provide a clear, user-friendly summary with an action suggestion.
 
105
  """
106
 
107
  llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
 
143
 
144
  document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
145
  formatted_titles = " " + "\n".join(document_titles)
146
+ intelligent_search_summary = generate_search_summary(context_data, refined_query)
147
 
148
  results = {
149
  "results": [