Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -26,103 +26,45 @@ embeddings = VoyageAIEmbeddings(voyage_api_key=voyage_api_key, model="voyage-law
|
|
26 |
# 🔹 Query Expansion using GPT-4
|
27 |
def expand_query(query):
|
28 |
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
|
29 |
-
prompt = f"Rewrite this vague query
|
30 |
refined_query = llm([HumanMessage(content=prompt)]).content.strip()
|
31 |
return refined_query if refined_query else query
|
32 |
|
33 |
# 🔹 Hybrid Search (TF-IDF + Semantic Retrieval)
|
34 |
-
# def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fetch_k=50):
|
35 |
-
# vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
36 |
-
# semantic_results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=fetch_k)
|
37 |
-
|
38 |
-
# all_texts = [doc.page_content for doc in semantic_results]
|
39 |
-
# vectorizer = TfidfVectorizer(stop_words="english")
|
40 |
-
# tfidf_matrix = vectorizer.fit_transform(all_texts)
|
41 |
-
# query_tfidf = vectorizer.transform([query])
|
42 |
-
# keyword_scores = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
|
43 |
-
|
44 |
-
# combined_results, seen_ids = [], set()
|
45 |
-
# for i, doc in enumerate(semantic_results):
|
46 |
-
# doc_id, doc_groups = doc.metadata.get("id"), doc.metadata.get("groups", [])
|
47 |
-
# semantic_score = float(doc.metadata.get("score", 0))
|
48 |
-
# keyword_score = float(keyword_scores[i])
|
49 |
-
# final_score = 0.65 * semantic_score + 0.35 * keyword_score # Hybrid score
|
50 |
-
|
51 |
-
# if doc_id not in seen_ids and any(group in user_groups for group in doc_groups) and final_score > min_score:
|
52 |
-
# seen_ids.add(doc_id)
|
53 |
-
# doc.metadata["final_score"] = final_score
|
54 |
-
# combined_results.append(doc)
|
55 |
-
|
56 |
-
# combined_results.sort(key=lambda x: x.metadata["final_score"], reverse=True)
|
57 |
-
# return [
|
58 |
-
# {
|
59 |
-
# "doc_id": doc.metadata.get("doc_id", "N/A"),
|
60 |
-
# "chunk_id": doc.metadata.get("id", "N/A"),
|
61 |
-
# "title": doc.metadata.get("source", "N/A"),
|
62 |
-
# "text": doc.page_content,
|
63 |
-
# "page_number": str(doc.metadata.get("page_number", "N/A")),
|
64 |
-
# "score": str(doc.metadata.get("final_score", "N/A")),
|
65 |
-
# }
|
66 |
-
# for doc in combined_results
|
67 |
-
# ]
|
68 |
-
|
69 |
def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fetch_k=50):
|
70 |
vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
if doc_id not in seen_ids and final_score > min_score:
|
105 |
-
seen_ids.add(doc_id)
|
106 |
-
doc.metadata["final_score"] = final_score
|
107 |
-
combined_results.append(doc)
|
108 |
-
|
109 |
-
# **5️⃣ Sort Results by Final Score**
|
110 |
-
combined_results.sort(key=lambda x: x.metadata["final_score"], reverse=True)
|
111 |
-
|
112 |
-
return [
|
113 |
-
{
|
114 |
-
"doc_id": doc.metadata.get("doc_id", "N/A"),
|
115 |
-
"chunk_id": doc.metadata.get("id", "N/A"),
|
116 |
-
"title": doc.metadata.get("source", "N/A"),
|
117 |
-
"text": doc.page_content,
|
118 |
-
"page_number": str(doc.metadata.get("page_number", "N/A")),
|
119 |
-
"score": str(doc.metadata.get("final_score", "N/A")),
|
120 |
-
}
|
121 |
-
for doc in combined_results
|
122 |
-
]
|
123 |
-
except Exception as e:
|
124 |
-
print(e)
|
125 |
-
return
|
126 |
|
127 |
# 🔹 Metadata-Weighted Reranking
|
128 |
def rerank(query, context):
|
@@ -133,9 +75,9 @@ def rerank(query, context):
|
|
133 |
final_reranked = []
|
134 |
for entry in reranker.data:
|
135 |
doc, score = entry["document"], float(entry["score"])
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
doc["final_score"] = final_score
|
140 |
final_reranked.append(doc)
|
141 |
|
@@ -143,24 +85,23 @@ def rerank(query, context):
|
|
143 |
return final_reranked
|
144 |
|
145 |
# 🔹 Intelligent Search Summary Generator
|
146 |
-
def generate_search_summary(search_results,
|
147 |
if not search_results:
|
148 |
return "No relevant documents found. Try refining your query."
|
149 |
|
150 |
-
num_results = len(
|
151 |
doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
|
152 |
doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
|
153 |
relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
|
154 |
|
155 |
summary_prompt = f"""
|
156 |
-
Generate a concise 1-3 sentence summary
|
157 |
- User Query: "{query}"
|
158 |
- Matching Documents: {num_results} found
|
159 |
- Titles: {", ".join(set(doc_titles))}
|
160 |
- Pages Referenced: {", ".join(set(doc_pages))}
|
161 |
- Relevance Scores (0-1): {relevance_scores}
|
162 |
Provide a clear, user-friendly summary with an action suggestion.
|
163 |
-
If scores are low but the documents are from the same title no need to comment on the scores.
|
164 |
"""
|
165 |
|
166 |
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
|
@@ -202,7 +143,7 @@ def complete_workflow(query, user_groups, index_name="briefmeta"):
|
|
202 |
|
203 |
document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
|
204 |
formatted_titles = " " + "\n".join(document_titles)
|
205 |
-
intelligent_search_summary = generate_search_summary(context_data,
|
206 |
|
207 |
results = {
|
208 |
"results": [
|
|
|
26 |
# 🔹 Query Expansion using GPT-4
|
27 |
def expand_query(query):
|
28 |
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
|
29 |
+
prompt = f"Rewrite this vague query into a more specific one:\nQuery: {query}\nSpecific Query:"
|
30 |
refined_query = llm([HumanMessage(content=prompt)]).content.strip()
|
31 |
return refined_query if refined_query else query
|
32 |
|
33 |
# 🔹 Hybrid Search (TF-IDF + Semantic Retrieval)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fetch_k=50):
|
35 |
vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
36 |
+
semantic_results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=fetch_k)
|
37 |
+
|
38 |
+
all_texts = [doc.page_content for doc in semantic_results]
|
39 |
+
vectorizer = TfidfVectorizer(stop_words="english")
|
40 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
41 |
+
query_tfidf = vectorizer.transform([query])
|
42 |
+
keyword_scores = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
|
43 |
+
|
44 |
+
combined_results, seen_ids = [], set()
|
45 |
+
for i, doc in enumerate(semantic_results):
|
46 |
+
doc_id, doc_groups = doc.metadata.get("id"), doc.metadata.get("groups", [])
|
47 |
+
semantic_score = float(doc.metadata.get("score", 0))
|
48 |
+
keyword_score = float(keyword_scores[i])
|
49 |
+
final_score = 0.7 * semantic_score + 0.3 * keyword_score # Hybrid score
|
50 |
+
|
51 |
+
if doc_id not in seen_ids and any(group in user_groups for group in doc_groups) and final_score > min_score:
|
52 |
+
seen_ids.add(doc_id)
|
53 |
+
doc.metadata["final_score"] = final_score
|
54 |
+
combined_results.append(doc)
|
55 |
+
|
56 |
+
combined_results.sort(key=lambda x: x.metadata["final_score"], reverse=True)
|
57 |
+
return [
|
58 |
+
{
|
59 |
+
"doc_id": doc.metadata.get("doc_id", "N/A"),
|
60 |
+
"chunk_id": doc.metadata.get("id", "N/A"),
|
61 |
+
"title": doc.metadata.get("source", "N/A"),
|
62 |
+
"text": doc.page_content,
|
63 |
+
"page_number": str(doc.metadata.get("page_number", "N/A")),
|
64 |
+
"score": str(doc.metadata.get("final_score", "N/A")),
|
65 |
+
}
|
66 |
+
for doc in combined_results
|
67 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# 🔹 Metadata-Weighted Reranking
|
70 |
def rerank(query, context):
|
|
|
75 |
final_reranked = []
|
76 |
for entry in reranker.data:
|
77 |
doc, score = entry["document"], float(entry["score"])
|
78 |
+
citation_boost = 1.2 if "high_citations" in doc.get("tags", []) else 1.0
|
79 |
+
recency_boost = 1.1 if "recent_upload" in doc.get("tags", []) else 1.0
|
80 |
+
final_score = score * citation_boost * recency_boost
|
81 |
doc["final_score"] = final_score
|
82 |
final_reranked.append(doc)
|
83 |
|
|
|
85 |
return final_reranked
|
86 |
|
87 |
# 🔹 Intelligent Search Summary Generator
|
88 |
+
def generate_search_summary(search_results, query):
|
89 |
if not search_results:
|
90 |
return "No relevant documents found. Try refining your query."
|
91 |
|
92 |
+
num_results = len(search_results)
|
93 |
doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
|
94 |
doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
|
95 |
relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
|
96 |
|
97 |
summary_prompt = f"""
|
98 |
+
Generate a concise 1-3 sentence summary:
|
99 |
- User Query: "{query}"
|
100 |
- Matching Documents: {num_results} found
|
101 |
- Titles: {", ".join(set(doc_titles))}
|
102 |
- Pages Referenced: {", ".join(set(doc_pages))}
|
103 |
- Relevance Scores (0-1): {relevance_scores}
|
104 |
Provide a clear, user-friendly summary with an action suggestion.
|
|
|
105 |
"""
|
106 |
|
107 |
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
|
|
|
143 |
|
144 |
document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
|
145 |
formatted_titles = " " + "\n".join(document_titles)
|
146 |
+
intelligent_search_summary = generate_search_summary(context_data, refined_query)
|
147 |
|
148 |
results = {
|
149 |
"results": [
|