Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -66,53 +66,63 @@ def expand_query(query):
|
|
66 |
# for doc in combined_results
|
67 |
# ]
|
68 |
|
69 |
-
def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0, fetch_k=50):
|
70 |
vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
doc.metadata
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
# 🔹 Metadata-Weighted Reranking
|
118 |
def rerank(query, context):
|
|
|
66 |
# for doc in combined_results
|
67 |
# ]
|
68 |
|
69 |
+
def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fetch_k=50):
|
70 |
vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
71 |
|
72 |
+
try:
|
73 |
+
|
74 |
+
filtered_results = vector_store.similarity_search(
|
75 |
+
query="", # Empty query just to fetch all documents
|
76 |
+
k=fetch_k,
|
77 |
+
filter={"groups": {"$in": user_groups}}, # Filter for user-specific chunks
|
78 |
+
)
|
79 |
+
|
80 |
+
if not filtered_results:
|
81 |
+
print("No results:")
|
82 |
+
return []
|
83 |
+
else:
|
84 |
+
print(filtered_results)
|
85 |
+
|
86 |
+
# **2️⃣ Perform Semantic Search on the Filtered Set**
|
87 |
+
#semantic_results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=fetch_k)
|
88 |
+
|
89 |
+
# **3️⃣ TF-IDF Keyword Search on Filtered Set**
|
90 |
+
all_texts = [doc.page_content for doc in filtered_results] # Use filtered docs
|
91 |
+
vectorizer = TfidfVectorizer(stop_words="english")
|
92 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
93 |
+
query_tfidf = vectorizer.transform([query])
|
94 |
+
keyword_scores = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
|
95 |
+
|
96 |
+
# **4️⃣ Hybrid Score Calculation**
|
97 |
+
combined_results, seen_ids = [], set()
|
98 |
+
for i, doc in enumerate(filtered_results): # Iterate over filtered results
|
99 |
+
doc_id = doc.metadata.get("id")
|
100 |
+
semantic_score = float(doc.metadata.get("score", 0))
|
101 |
+
keyword_score = float(keyword_scores[i])
|
102 |
+
final_score = 0.65 * semantic_score + 0.35 * keyword_score # Hybrid score
|
103 |
+
|
104 |
+
if doc_id not in seen_ids and final_score > min_score:
|
105 |
+
seen_ids.add(doc_id)
|
106 |
+
doc.metadata["final_score"] = final_score
|
107 |
+
combined_results.append(doc)
|
108 |
+
|
109 |
+
# **5️⃣ Sort Results by Final Score**
|
110 |
+
combined_results.sort(key=lambda x: x.metadata["final_score"], reverse=True)
|
111 |
+
|
112 |
+
return [
|
113 |
+
{
|
114 |
+
"doc_id": doc.metadata.get("doc_id", "N/A"),
|
115 |
+
"chunk_id": doc.metadata.get("id", "N/A"),
|
116 |
+
"title": doc.metadata.get("source", "N/A"),
|
117 |
+
"text": doc.page_content,
|
118 |
+
"page_number": str(doc.metadata.get("page_number", "N/A")),
|
119 |
+
"score": str(doc.metadata.get("final_score", "N/A")),
|
120 |
+
}
|
121 |
+
for doc in combined_results
|
122 |
+
]
|
123 |
+
except Exception as e:
|
124 |
+
print(e)
|
125 |
+
return
|
126 |
|
127 |
# 🔹 Metadata-Weighted Reranking
|
128 |
def rerank(query, context):
|