Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,197 +3,152 @@ from dotenv import load_dotenv
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.schema import HumanMessage
|
6 |
-
from langchain_openai import OpenAIEmbeddings
|
7 |
from langchain_voyageai import VoyageAIEmbeddings
|
8 |
from langchain_pinecone import PineconeVectorStore
|
9 |
-
from langchain_openai import ChatOpenAI
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
-
from
|
12 |
-
from
|
13 |
-
from
|
14 |
-
from langchain_core.documents import Document
|
15 |
-
from langchain_core.runnables import chain
|
16 |
-
from pinecone import Pinecone, ServerlessSpec
|
17 |
import openai
|
18 |
-
import numpy as np
|
19 |
import gradio as gr
|
20 |
|
|
|
21 |
load_dotenv()
|
22 |
-
|
23 |
-
# Initialize OpenAI and Pinecone credentials
|
24 |
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
25 |
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
|
26 |
-
pinecone_environment = os.environ.get("PINECONE_ENV")
|
27 |
voyage_api_key = os.environ.get("VOYAGE_API_KEY")
|
28 |
|
29 |
# Initialize Pinecone
|
30 |
-
|
31 |
-
|
32 |
-
except Exception as e:
|
33 |
-
print(f"Error connecting to Pinecone: {str(e)}")
|
34 |
-
|
35 |
-
embeddings = VoyageAIEmbeddings(
|
36 |
-
voyage_api_key=voyage_api_key, model="voyage-law-2"
|
37 |
-
)
|
38 |
|
|
|
39 |
def expand_query(query):
|
40 |
-
"""
|
41 |
-
Expands the query to make it more precise using an LLM.
|
42 |
-
Example: "docs" -> "Find all legal documents related to case law."
|
43 |
-
"""
|
44 |
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
|
45 |
-
prompt = f"Rewrite
|
46 |
-
|
47 |
refined_query = llm([HumanMessage(content=prompt)]).content.strip()
|
48 |
-
|
49 |
return refined_query if refined_query else query
|
50 |
-
|
51 |
-
def search_documents(query, user_groups, index_name="briefmeta", min_score=0.01):
|
52 |
-
try:
|
53 |
-
vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
54 |
-
|
55 |
-
results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=30)
|
56 |
-
|
57 |
-
seen_ids = set()
|
58 |
-
unique_results = []
|
59 |
-
|
60 |
-
for result in results:
|
61 |
-
unique_id = result.metadata.get("id")
|
62 |
-
doc_groups = result.metadata.get("groups", [])
|
63 |
-
score = result.metadata.get("score", 0)
|
64 |
-
|
65 |
-
# Apply user group filtering & score threshold
|
66 |
-
if unique_id not in seen_ids and any(group in user_groups for group in doc_groups) and score > min_score:
|
67 |
-
seen_ids.add(unique_id)
|
68 |
-
unique_results.append(result)
|
69 |
-
|
70 |
-
context = [
|
71 |
-
{
|
72 |
-
"doc_id": result.metadata.get("doc_id", "N/A"),
|
73 |
-
"chunk_id": result.metadata.get("id", "N/A"),
|
74 |
-
"title": result.metadata.get("source", "N/A"),
|
75 |
-
"text": result.page_content,
|
76 |
-
"page_number": str(result.metadata.get("page_number", "N/A")),
|
77 |
-
"score": str(result.metadata.get("score", "N/A")),
|
78 |
-
}
|
79 |
-
for result in unique_results
|
80 |
-
]
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
-
return result
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def generate_output(context, query):
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
if not context.strip():
|
101 |
-
return "I couldn't find relevant information for your query. Could you refine your question?"
|
102 |
-
|
103 |
-
prompt_template = PromptTemplate(
|
104 |
-
template="""Use the following document context to answer accurately:
|
105 |
-
Context: {context}
|
106 |
-
Question: {question}
|
107 |
-
If the answer is unclear, ask for clarification.
|
108 |
-
Answer:""",
|
109 |
-
input_variables=["context", "question"]
|
110 |
-
)
|
111 |
-
|
112 |
-
prompt = prompt_template.format(context=context, question=query)
|
113 |
-
response = llm([HumanMessage(content=prompt)]).content.strip()
|
114 |
-
|
115 |
-
return response if response else "No relevant answer found."
|
116 |
-
|
117 |
-
except Exception as e:
|
118 |
-
return f"Error generating output: {str(e)}"
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
# Extract metadata
|
129 |
-
num_results = len(document_titles)
|
130 |
-
doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
|
131 |
-
doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
|
132 |
-
relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
|
133 |
-
|
134 |
-
# Identify recency (to be implemented)
|
135 |
-
recency_info = ""
|
136 |
-
if "date_uploaded" in search_results[0]: # Assuming date is available
|
137 |
-
dates = [doc.get("date_uploaded", "Unknown") for doc in search_results]
|
138 |
-
recency_info = f"Most recent document uploaded on {max(dates)}."
|
139 |
-
|
140 |
-
# Identify common keywords
|
141 |
-
common_terms = set()
|
142 |
-
for doc in search_results:
|
143 |
-
text_snippet = doc.get("text", "").split()[:50] # Take first 50 words
|
144 |
-
common_terms.update(text_snippet)
|
145 |
-
|
146 |
-
summary_prompt = f"""
|
147 |
-
Generate a concise 1-3 sentence summary of the search results.
|
148 |
-
- User Query: "{query}"
|
149 |
-
- Matching Documents: {num_results} found
|
150 |
-
- Titles: {", ".join(set(doc_titles))}
|
151 |
-
- Pages Referenced: {", ".join(set(doc_pages))}
|
152 |
-
- Common Terms: {", ".join(list(common_terms)[:10])} (top terms)
|
153 |
-
- Recency: {recency_info}
|
154 |
-
- Relevance Scores (0-1): {relevance_scores}
|
155 |
-
|
156 |
-
Provide a clear, user-friendly summary with an action suggestion.
|
157 |
-
"""
|
158 |
-
|
159 |
-
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
|
160 |
-
summary = llm([HumanMessage(content=summary_prompt)]).content.strip()
|
161 |
-
|
162 |
-
return summary if summary else "No intelligent summary available."
|
163 |
-
|
164 |
-
except Exception as e:
|
165 |
-
return f"Error generating search summary: {str(e)}"
|
166 |
|
|
|
167 |
def complete_workflow(query, user_groups, index_name="briefmeta"):
|
168 |
try:
|
169 |
-
# Expand the query
|
170 |
refined_query = expand_query(query)
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
'
|
181 |
-
'
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
'score': str(entry['score'])
|
186 |
-
})
|
187 |
|
188 |
document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
|
189 |
formatted_titles = " " + "\n".join(document_titles)
|
190 |
-
|
191 |
-
total_results = len(context_data)
|
192 |
|
193 |
results = {
|
194 |
"results": [
|
195 |
{
|
196 |
-
"natural_language_output": generate_output(doc["text"], refined_query),
|
197 |
"chunk_id": doc["chunk_id"],
|
198 |
"document_id": doc["doc_id"],
|
199 |
"title": doc["title"],
|
@@ -203,36 +158,30 @@ def complete_workflow(query, user_groups, index_name="briefmeta"):
|
|
203 |
}
|
204 |
for doc in context_data
|
205 |
],
|
206 |
-
"total_results":
|
|
|
207 |
}
|
208 |
|
209 |
-
return results, formatted_titles
|
|
|
210 |
except Exception as e:
|
211 |
-
return {"results": [], "total_results": 0}, f"Error in workflow: {str(e)}"
|
212 |
|
|
|
213 |
def gradio_app():
|
214 |
-
with gr.Blocks(
|
215 |
-
gr.Markdown("### Intelligent Document Search Prototype-v0.2")
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
with gr.Row():
|
226 |
-
titles_output = gr.Textbox(label=" Retrieved Document Titles", interactive=False)
|
227 |
-
|
228 |
-
search_btn.click(
|
229 |
-
complete_workflow,
|
230 |
-
inputs=[user_query, user_groups, index_name],
|
231 |
-
outputs=[result_output, titles_output]
|
232 |
-
)
|
233 |
|
234 |
return app
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
gradio_app().launch()
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.schema import HumanMessage
|
6 |
+
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
7 |
from langchain_voyageai import VoyageAIEmbeddings
|
8 |
from langchain_pinecone import PineconeVectorStore
|
|
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
+
from pinecone import Pinecone
|
11 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
13 |
import openai
|
|
|
14 |
import gradio as gr
|
15 |
|
16 |
+
# Load API keys
|
17 |
load_dotenv()
|
|
|
|
|
18 |
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
19 |
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
|
|
|
20 |
voyage_api_key = os.environ.get("VOYAGE_API_KEY")
|
21 |
|
22 |
# Initialize Pinecone
|
23 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
24 |
+
embeddings = VoyageAIEmbeddings(voyage_api_key=voyage_api_key, model="voyage-law-2")
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# πΉ Query Expansion using GPT-4
|
27 |
def expand_query(query):
|
|
|
|
|
|
|
|
|
28 |
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
|
29 |
+
prompt = f"Rewrite this vague query into a more specific one:\nQuery: {query}\nSpecific Query:"
|
|
|
30 |
refined_query = llm([HumanMessage(content=prompt)]).content.strip()
|
|
|
31 |
return refined_query if refined_query else query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# πΉ Hybrid Search (TF-IDF + Semantic Retrieval)
|
34 |
+
def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fetch_k=50):
|
35 |
+
vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
36 |
+
semantic_results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=fetch_k)
|
37 |
+
|
38 |
+
all_texts = [doc.page_content for doc in semantic_results]
|
39 |
+
vectorizer = TfidfVectorizer(stop_words="english")
|
40 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
41 |
+
query_tfidf = vectorizer.transform([query])
|
42 |
+
keyword_scores = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
|
43 |
+
|
44 |
+
combined_results, seen_ids = [], set()
|
45 |
+
for i, doc in enumerate(semantic_results):
|
46 |
+
doc_id, doc_groups = doc.metadata.get("id"), doc.metadata.get("groups", [])
|
47 |
+
semantic_score = float(doc.metadata.get("score", 0))
|
48 |
+
keyword_score = float(keyword_scores[i])
|
49 |
+
final_score = 0.7 * semantic_score + 0.3 * keyword_score # Hybrid score
|
50 |
+
|
51 |
+
if doc_id not in seen_ids and any(group in user_groups for group in doc_groups) and final_score > min_score:
|
52 |
+
seen_ids.add(doc_id)
|
53 |
+
doc.metadata["final_score"] = final_score
|
54 |
+
combined_results.append(doc)
|
55 |
+
|
56 |
+
combined_results.sort(key=lambda x: x.metadata["final_score"], reverse=True)
|
57 |
+
return [
|
58 |
+
{
|
59 |
+
"doc_id": doc.metadata.get("doc_id", "N/A"),
|
60 |
+
"chunk_id": doc.metadata.get("id", "N/A"),
|
61 |
+
"title": doc.metadata.get("source", "N/A"),
|
62 |
+
"text": doc.page_content,
|
63 |
+
"page_number": str(doc.metadata.get("page_number", "N/A")),
|
64 |
+
"score": str(doc.metadata.get("final_score", "N/A")),
|
65 |
+
}
|
66 |
+
for doc in combined_results
|
67 |
+
]
|
68 |
+
|
69 |
+
# πΉ Metadata-Weighted Reranking
|
70 |
+
def rerank(query, context):
|
71 |
+
reranker = pc.inference.rerank(
|
72 |
+
model="bge-reranker-v2-m3", query=query, documents=context, top_n=10, return_documents=True
|
73 |
)
|
|
|
74 |
|
75 |
+
final_reranked = []
|
76 |
+
for entry in reranker.data:
|
77 |
+
doc, score = entry["document"], float(entry["score"])
|
78 |
+
citation_boost = 1.2 if "high_citations" in doc.get("tags", []) else 1.0
|
79 |
+
recency_boost = 1.1 if "recent_upload" in doc.get("tags", []) else 1.0
|
80 |
+
final_score = score * citation_boost * recency_boost
|
81 |
+
doc["final_score"] = final_score
|
82 |
+
final_reranked.append(doc)
|
83 |
+
|
84 |
+
final_reranked.sort(key=lambda x: x["final_score"], reverse=True)
|
85 |
+
return final_reranked
|
86 |
+
|
87 |
+
# πΉ Intelligent Search Summary Generator
|
88 |
+
def generate_search_summary(search_results, query):
|
89 |
+
if not search_results:
|
90 |
+
return "No relevant documents found. Try refining your query."
|
91 |
+
|
92 |
+
num_results = len(search_results)
|
93 |
+
doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
|
94 |
+
doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
|
95 |
+
relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
|
96 |
+
|
97 |
+
summary_prompt = f"""
|
98 |
+
Generate a concise 1-3 sentence summary:
|
99 |
+
- User Query: "{query}"
|
100 |
+
- Matching Documents: {num_results} found
|
101 |
+
- Titles: {", ".join(set(doc_titles))}
|
102 |
+
- Pages Referenced: {", ".join(set(doc_pages))}
|
103 |
+
- Relevance Scores (0-1): {relevance_scores}
|
104 |
+
Provide a clear, user-friendly summary with an action suggestion.
|
105 |
+
"""
|
106 |
+
|
107 |
+
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
|
108 |
+
summary = llm([HumanMessage(content=summary_prompt)]).content.strip()
|
109 |
+
return summary if summary else "No intelligent summary available."
|
110 |
+
|
111 |
+
# πΉ LLM-based Answer Generation
|
112 |
def generate_output(context, query):
|
113 |
+
if not context.strip():
|
114 |
+
return "No relevant information found. Try refining your query."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
|
117 |
+
prompt_template = PromptTemplate(
|
118 |
+
template="Use the following context to answer the question:\nContext: {context}\nQuestion: {question}\nAnswer:",
|
119 |
+
input_variables=["context", "question"],
|
120 |
+
)
|
121 |
+
prompt = prompt_template.format(context=context, question=query)
|
122 |
+
response = llm([HumanMessage(content=prompt)]).content.strip()
|
123 |
+
return response if response else "No relevant answer found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
# πΉ Full Workflow
|
126 |
def complete_workflow(query, user_groups, index_name="briefmeta"):
|
127 |
try:
|
|
|
128 |
refined_query = expand_query(query)
|
129 |
+
context_data = hybrid_search(refined_query, user_groups)
|
130 |
+
reranked_results = rerank(refined_query, context_data)
|
131 |
+
|
132 |
+
context_data = [
|
133 |
+
{
|
134 |
+
'chunk_id': doc["chunk_id"],
|
135 |
+
'doc_id': doc["doc_id"],
|
136 |
+
'title': doc["title"],
|
137 |
+
'text': doc["text"],
|
138 |
+
'page_number': str(doc["page_number"]),
|
139 |
+
'score': str(doc["final_score"])
|
140 |
+
}
|
141 |
+
for doc in reranked_results
|
142 |
+
]
|
|
|
|
|
143 |
|
144 |
document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
|
145 |
formatted_titles = " " + "\n".join(document_titles)
|
146 |
+
intelligent_search_summary = generate_search_summary(context_data, refined_query)
|
|
|
147 |
|
148 |
results = {
|
149 |
"results": [
|
150 |
{
|
151 |
+
"natural_language_output": generate_output(doc["text"], refined_query),
|
152 |
"chunk_id": doc["chunk_id"],
|
153 |
"document_id": doc["doc_id"],
|
154 |
"title": doc["title"],
|
|
|
158 |
}
|
159 |
for doc in context_data
|
160 |
],
|
161 |
+
"total_results": len(context_data),
|
162 |
+
"intelligent_search_summary": intelligent_search_summary
|
163 |
}
|
164 |
|
165 |
+
return results, formatted_titles, intelligent_search_summary
|
166 |
+
|
167 |
except Exception as e:
|
168 |
+
return {"results": [], "total_results": 0, "intelligent_search_summary": "Error generating summary."}, f"Error in workflow: {str(e)}"
|
169 |
|
170 |
+
# πΉ Gradio UI
|
171 |
def gradio_app():
|
172 |
+
with gr.Blocks() as app:
|
173 |
+
gr.Markdown("### π Intelligent Document Search Prototype-v0.2")
|
174 |
+
user_query = gr.Textbox(label="π Enter Search Query")
|
175 |
+
user_groups = gr.Textbox(label="π₯ User Groups", placeholder="e.g., ['KarthikPersonal']")
|
176 |
+
index_name = gr.Textbox(label="π Index Name", placeholder="Default: briefmeta")
|
177 |
+
search_btn = gr.Button("π Search")
|
178 |
+
search_summary = gr.Textbox(label="π Intelligent Search Summary", interactive=False)
|
179 |
+
result_output = gr.JSON(label="π Search Results")
|
180 |
+
titles_output = gr.Textbox(label="π Retrieved Document Titles", interactive=False)
|
181 |
+
|
182 |
+
search_btn.click(complete_workflow, inputs=[user_query, user_groups, index_name], outputs=[result_output, titles_output, search_summary])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
return app
|
185 |
|
186 |
+
# Launch the App
|
187 |
+
gradio_app().launch()
|
|