new-space / app.py
boompack's picture
Update app.py
978ab36 verified
raw
history blame
12.7 kB
import gradio as gr
import re
from collections import Counter
from datetime import datetime
import emoji
import logging
from typing import Tuple, List, Optional
import statistics
import csv
from textblob import TextBlob
import numpy as np
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def clean_text(text):
"""Очищает текст от лишних пробелов и переносов строк"""
return ' '.join(text.split())
def count_emojis(text):
"""Подсчитывает количество эмодзи в тексте"""
return len([c for c in text if c in emoji.EMOJI_DATA])
def extract_mentions(text):
"""Извлекает упоминания пользователей из текста"""
return re.findall(r'@[\w\.]+', text)
def get_comment_words(text):
"""Получает список слов из комментария для анализа"""
words = re.findall(r'\w+', text.lower())
return [w for w in words if len(w) > 2]
def analyze_sentiment(text):
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ']
negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
'разочарован', 'печаль', 'грустно']
text_lower = text.lower()
positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
exclamation_count = text.count('!')
positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
# Добавляем анализ через TextBlob для более точной оценки
blob = TextBlob(text)
sentiment_score = blob.sentiment.polarity
# Комбинируем оба подхода
final_score = (positive_count - negative_count) + sentiment_score
if final_score > 0:
return 'positive'
elif final_score < 0:
return 'negative'
return 'neutral'
def extract_comment_data(comment_text):
"""
Извлекает данные из отдельного комментария
"""
try:
# Проверка на скрытый комментарий
if 'Скрыто алгоритмами Instagram' in comment_text:
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
if username_match:
return username_match.group(1).strip(), "", 0, 0
# Извлекаем имя пользователя
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
if not username_match:
return None, None, 0, 0
username = username_match.group(1).strip()
# Улучшенное извлечение текста комментария
comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
if comment_match:
comment = clean_text(comment_match.group(1))
comment = re.sub(fr'^{re.escape(username)}\s*', '', comment)
comment = re.sub(r'^@[\w\.]+ ', '', comment)
else:
comment = ""
# Извлекаем количество недель
week_match = re.search(r'(\d+) нед\.', comment_text)
weeks = int(week_match.group(1)) if week_match else 0
# Извлекаем лайки с улучшенным поиском
likes = 0
likes_patterns = [
r"(\d+) отметк[аи] \"Нравится\"",
r"Нравится: (\d+)",
r"\"Нравится\": (\d+)",
]
for pattern in likes_patterns:
likes_match = re.search(pattern, comment_text)
if likes_match:
likes = int(likes_match.group(1))
break
return username, comment.strip(), likes, weeks
except Exception as e:
logger.error(f"Error extracting comment data: {e}")
return None, None, 0, 0
def analyze_post(content_type, link_to_post, post_likes, post_date, description, comment_count, all_comments):
try:
# Улучшенное разделение комментариев
comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
comments_blocks = [block for block in comments_blocks if block.strip()]
# Основные списки для данных
usernames = []
comments = []
likes = []
weeks = []
# Дополнительные метрики
total_emojis = 0
mentions = []
sentiments = []
comment_lengths = []
words_per_comment = []
all_words = []
user_engagement = {}
reply_chains = []
current_chain = []
# Обработка каждого комментария
for block in comments_blocks:
username, comment, like_count, week_number = extract_comment_data(block)
if username and (comment is not None):
usernames.append(username)
comments.append(comment)
likes.append(str(like_count))
weeks.append(week_number)
# Базовые метрики
total_emojis += count_emojis(comment)
comment_mentions = extract_mentions(comment)
mentions.extend(comment_mentions)
sentiment = analyze_sentiment(comment)
sentiments.append(sentiment)
comment_lengths.append(len(comment))
# Анализ цепочек ответов
if comment_mentions:
current_chain.append((username, comment_mentions[0]))
else:
if current_chain:
reply_chains.append(current_chain)
current_chain = []
# Расширенные метрики
words = get_comment_words(comment)
words_per_comment.append(len(words))
all_words.extend(words)
# Статистика пользователя
if username not in user_engagement:
user_engagement[username] = {
'comments': 0,
'total_likes': 0,
'emoji_usage': 0,
'avg_length': 0,
'sentiments': [],
'mentions_received': 0,
'mentions_made': len(comment_mentions),
'response_time': []
}
user_stats = user_engagement[username]
user_stats['comments'] += 1
user_stats['total_likes'] += like_count
user_stats['emoji_usage'] += count_emojis(comment)
user_stats['avg_length'] += len(comment)
user_stats['sentiments'].append(sentiment)
# Финализируем цепочки ответов
if current_chain:
reply_chains.append(current_chain)
# Обновляем статистику пользователей
for username in user_engagement:
stats = user_engagement[username]
stats['avg_length'] /= stats['comments']
stats['engagement_rate'] = stats['total_likes'] / stats['comments']
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
stats['mentions_received'] = sum(1 for m in mentions if m == f'@{username}')
# Экспериментальная аналитика
experimental_metrics = {
'conversation_depth': len(max(reply_chains, key=len)) if reply_chains else 0,
'avg_response_time': np.mean([c['avg_length'] for c in user_engagement.values()]),
'engagement_consistency': np.std([c['comments'] for c in user_engagement.values()]),
'user_interaction_score': len([c for c in comments if any(mention in c for mention in mentions)]) / len(comments),
'sentiment_volatility': np.std([1 if s == 'positive' else -1 if s == 'negative' else 0 for s in sentiments]),
}
# Форматируем данные для CSV
csv_data = {
'post_url': link_to_post,
'total_comments': len(comments),
'total_likes': sum(map(int, likes)),
'avg_likes_per_comment': sum(map(int, likes)) / len(comments),
'unique_users': len(set(usernames)),
'emoji_rate': total_emojis / len(comments),
'avg_comment_length': sum(comment_lengths) / len(comments),
'positive_sentiment_ratio': sum(1 for s in sentiments if s == 'positive') / len(sentiments),
'mention_rate': len(mentions) / len(comments),
'conversation_depth': experimental_metrics['conversation_depth'],
'user_interaction_score': experimental_metrics['user_interaction_score'],
'sentiment_volatility': experimental_metrics['sentiment_volatility'],
}
# Форматируем вывод для CSV
csv_output = ",".join([f"{k}:{v}" for k, v in csv_data.items()])
# Форматируем детальную аналитику
analytics_summary = (
f"CSV_DATA\n{csv_output}\n\n"
f"DETAILED_ANALYTICS\n"
f"Content Type: {content_type}\n"
f"Link to Post: {link_to_post}\n\n"
f"BASIC_STATS\n"
f"Total Comments: {len(comments)}\n"
f"Total Likes: {sum(map(int, likes))}\n"
f"Unique Users: {len(set(usernames))}\n"
f"Activity Period: {max(weeks)}-{min(weeks)} weeks\n\n"
f"CONTENT_ANALYSIS\n"
f"Avg Comment Length: {sum(comment_lengths) / len(comments):.1f}\n"
f"Total Emojis: {total_emojis}\n"
f"Sentiment Distribution: {Counter(sentiments)}\n\n"
f"EXPERIMENTAL_METRICS\n"
f"Conversation Depth: {experimental_metrics['conversation_depth']}\n"
f"User Interaction Score: {experimental_metrics['user_interaction_score']:.2f}\n"
f"Sentiment Volatility: {experimental_metrics['sentiment_volatility']:.2f}\n"
f"Engagement Consistency: {experimental_metrics['engagement_consistency']:.2f}\n"
)
return analytics_summary, usernames_output, comments_output, likes_chronology_output, str(sum(map(int, likes)))
except Exception as e:
logger.error(f"Error in analyze_post: {e}", exc_info=True)
return str(e), "", "", "", "0"
# Создаем интерфейс Gradio
iface = gr.Interface(
fn=analyze_post,
inputs=[
gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
gr.Textbox(label="Link to Post"),
gr.Number(label="Likes", value=0),
gr.Textbox(label="Post Date"),
gr.Textbox(label="Description", lines=3),
gr.Number(label="Total Comment Count", value=0),
gr.Textbox(label="All Comments", lines=10)
],
outputs=[
gr.Textbox(label="Analytics Summary", lines=20),
gr.Textbox(label="Usernames"),
gr.Textbox(label="Comments"),
gr.Textbox(label="Likes Chronology"),
gr.Textbox(label="Total Likes on Comments")
],
title="Enhanced Instagram Comment Analyzer",
description="Анализатор комментариев Instagram с расширенной аналитикой и CSV-форматированием"
)
if __name__ == "__main__":
iface.launch()