File size: 12,738 Bytes
b4bbaee
 
cbff93c
 
 
e5c8ff6
 
282dd48
978ab36
 
 
cbff93c
282dd48
e5c8ff6
 
cbff93c
282dd48
 
 
cbff93c
282dd48
 
 
b4bbaee
282dd48
 
 
e5c8ff6
282dd48
 
 
978ab36
e5c8ff6
282dd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978ab36
 
 
 
 
 
 
 
282dd48
978ab36
282dd48
 
e5c8ff6
282dd48
 
 
 
 
978ab36
 
 
 
 
 
282dd48
 
 
e5c8ff6
282dd48
 
 
978ab36
 
282dd48
 
 
978ab36
282dd48
 
 
 
 
 
 
 
978ab36
282dd48
 
 
 
978ab36
282dd48
 
 
 
 
 
 
 
 
 
 
 
e5c8ff6
282dd48
 
978ab36
 
282dd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978ab36
 
 
282dd48
 
 
 
978ab36
282dd48
 
 
 
e5c8ff6
282dd48
 
978ab36
 
282dd48
 
 
 
978ab36
 
 
 
 
 
 
 
282dd48
 
 
 
 
 
 
 
 
 
 
 
978ab36
 
 
 
282dd48
 
 
 
 
 
 
 
978ab36
 
 
 
282dd48
 
 
 
 
 
978ab36
282dd48
978ab36
 
 
 
 
 
 
282dd48
 
978ab36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282dd48
978ab36
 
282dd48
978ab36
282dd48
978ab36
 
282dd48
 
978ab36
 
 
 
 
 
 
 
 
 
 
 
 
 
282dd48
 
978ab36
cbff93c
282dd48
 
978ab36
282dd48
 
 
 
 
978ab36
 
 
 
 
 
 
282dd48
 
 
978ab36
 
 
 
282dd48
978ab36
 
282dd48
b4bbaee
cbff93c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import gradio as gr
import re
from collections import Counter
from datetime import datetime
import emoji
import logging
from typing import Tuple, List, Optional
import statistics
import csv
from textblob import TextBlob
import numpy as np

# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def clean_text(text):
    """Очищает текст от лишних пробелов и переносов строк"""
    return ' '.join(text.split())

def count_emojis(text):
    """Подсчитывает количество эмодзи в тексте"""
    return len([c for c in text if c in emoji.EMOJI_DATA])

def extract_mentions(text):
    """Извлекает упоминания пользователей из текста"""
    return re.findall(r'@[\w\.]+', text)

def get_comment_words(text):
    """Получает список слов из комментария для анализа"""
    words = re.findall(r'\w+', text.lower())
    return [w for w in words if len(w) > 2]

def analyze_sentiment(text):
    """Расширенный анализ тональности по эмодзи и ключевым словам"""
    positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
                         'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
                         'прекрасно', 'молодец', 'красота', 'спасибо', 'топ']
    negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑', 
                         'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
                         'разочарован', 'печаль', 'грустно']
    
    text_lower = text.lower()
    positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
    negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
    
    exclamation_count = text.count('!')
    positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
    negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
    
    # Добавляем анализ через TextBlob для более точной оценки
    blob = TextBlob(text)
    sentiment_score = blob.sentiment.polarity
    
    # Комбинируем оба подхода
    final_score = (positive_count - negative_count) + sentiment_score
    
    if final_score > 0:
        return 'positive'
    elif final_score < 0:
        return 'negative'
    return 'neutral'

def extract_comment_data(comment_text):
    """
    Извлекает данные из отдельного комментария
    """
    try:
        # Проверка на скрытый комментарий
        if 'Скрыто алгоритмами Instagram' in comment_text:
            username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
            if username_match:
                return username_match.group(1).strip(), "", 0, 0
        
        # Извлекаем имя пользователя
        username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
        if not username_match:
            return None, None, 0, 0
        
        username = username_match.group(1).strip()
        
        # Улучшенное извлечение текста комментария
        comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
        comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
        if comment_match:
            comment = clean_text(comment_match.group(1))
            comment = re.sub(fr'^{re.escape(username)}\s*', '', comment)
            comment = re.sub(r'^@[\w\.]+ ', '', comment)
        else:
            comment = ""
        
        # Извлекаем количество недель
        week_match = re.search(r'(\d+) нед\.', comment_text)
        weeks = int(week_match.group(1)) if week_match else 0
        
        # Извлекаем лайки с улучшенным поиском
        likes = 0
        likes_patterns = [
            r"(\d+) отметк[аи] \"Нравится\"",
            r"Нравится: (\d+)",
            r"\"Нравится\": (\d+)",
        ]
        
        for pattern in likes_patterns:
            likes_match = re.search(pattern, comment_text)
            if likes_match:
                likes = int(likes_match.group(1))
                break
        
        return username, comment.strip(), likes, weeks
    except Exception as e:
        logger.error(f"Error extracting comment data: {e}")
        return None, None, 0, 0

def analyze_post(content_type, link_to_post, post_likes, post_date, description, comment_count, all_comments):
    try:
        # Улучшенное разделение комментариев
        comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
        comments_blocks = [block for block in comments_blocks if block.strip()]
        
        # Основные списки для данных
        usernames = []
        comments = []
        likes = []
        weeks = []
        
        # Дополнительные метрики
        total_emojis = 0
        mentions = []
        sentiments = []
        comment_lengths = []
        words_per_comment = []
        all_words = []
        user_engagement = {}
        reply_chains = []
        current_chain = []
        
        # Обработка каждого комментария
        for block in comments_blocks:
            username, comment, like_count, week_number = extract_comment_data(block)
            if username and (comment is not None):
                usernames.append(username)
                comments.append(comment)
                likes.append(str(like_count))
                weeks.append(week_number)
                
                # Базовые метрики
                total_emojis += count_emojis(comment)
                comment_mentions = extract_mentions(comment)
                mentions.extend(comment_mentions)
                sentiment = analyze_sentiment(comment)
                sentiments.append(sentiment)
                comment_lengths.append(len(comment))
                
                # Анализ цепочек ответов
                if comment_mentions:
                    current_chain.append((username, comment_mentions[0]))
                else:
                    if current_chain:
                        reply_chains.append(current_chain)
                        current_chain = []
                
                # Расширенные метрики
                words = get_comment_words(comment)
                words_per_comment.append(len(words))
                all_words.extend(words)
                
                # Статистика пользователя
                if username not in user_engagement:
                    user_engagement[username] = {
                        'comments': 0,
                        'total_likes': 0,
                        'emoji_usage': 0,
                        'avg_length': 0,
                        'sentiments': [],
                        'mentions_received': 0,
                        'mentions_made': len(comment_mentions),
                        'response_time': []
                    }
                user_stats = user_engagement[username]
                user_stats['comments'] += 1
                user_stats['total_likes'] += like_count
                user_stats['emoji_usage'] += count_emojis(comment)
                user_stats['avg_length'] += len(comment)
                user_stats['sentiments'].append(sentiment)
        
        # Финализируем цепочки ответов
        if current_chain:
            reply_chains.append(current_chain)
        
        # Обновляем статистику пользователей
        for username in user_engagement:
            stats = user_engagement[username]
            stats['avg_length'] /= stats['comments']
            stats['engagement_rate'] = stats['total_likes'] / stats['comments']
            stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
            stats['mentions_received'] = sum(1 for m in mentions if m == f'@{username}')
        
        # Экспериментальная аналитика
        experimental_metrics = {
            'conversation_depth': len(max(reply_chains, key=len)) if reply_chains else 0,
            'avg_response_time': np.mean([c['avg_length'] for c in user_engagement.values()]),
            'engagement_consistency': np.std([c['comments'] for c in user_engagement.values()]),
            'user_interaction_score': len([c for c in comments if any(mention in c for mention in mentions)]) / len(comments),
            'sentiment_volatility': np.std([1 if s == 'positive' else -1 if s == 'negative' else 0 for s in sentiments]),
        }
        
        # Форматируем данные для CSV
        csv_data = {
            'post_url': link_to_post,
            'total_comments': len(comments),
            'total_likes': sum(map(int, likes)),
            'avg_likes_per_comment': sum(map(int, likes)) / len(comments),
            'unique_users': len(set(usernames)),
            'emoji_rate': total_emojis / len(comments),
            'avg_comment_length': sum(comment_lengths) / len(comments),
            'positive_sentiment_ratio': sum(1 for s in sentiments if s == 'positive') / len(sentiments),
            'mention_rate': len(mentions) / len(comments),
            'conversation_depth': experimental_metrics['conversation_depth'],
            'user_interaction_score': experimental_metrics['user_interaction_score'],
            'sentiment_volatility': experimental_metrics['sentiment_volatility'],
        }
        
        # Форматируем вывод для CSV
        csv_output = ",".join([f"{k}:{v}" for k, v in csv_data.items()])
        
        # Форматируем детальную аналитику
        analytics_summary = (
            f"CSV_DATA\n{csv_output}\n\n"
            f"DETAILED_ANALYTICS\n"
            f"Content Type: {content_type}\n"
            f"Link to Post: {link_to_post}\n\n"
            f"BASIC_STATS\n"
            f"Total Comments: {len(comments)}\n"
            f"Total Likes: {sum(map(int, likes))}\n"
            f"Unique Users: {len(set(usernames))}\n"
            f"Activity Period: {max(weeks)}-{min(weeks)} weeks\n\n"
            f"CONTENT_ANALYSIS\n"
            f"Avg Comment Length: {sum(comment_lengths) / len(comments):.1f}\n"
            f"Total Emojis: {total_emojis}\n"
            f"Sentiment Distribution: {Counter(sentiments)}\n\n"
            f"EXPERIMENTAL_METRICS\n"
            f"Conversation Depth: {experimental_metrics['conversation_depth']}\n"
            f"User Interaction Score: {experimental_metrics['user_interaction_score']:.2f}\n"
            f"Sentiment Volatility: {experimental_metrics['sentiment_volatility']:.2f}\n"
            f"Engagement Consistency: {experimental_metrics['engagement_consistency']:.2f}\n"
        )
        
        return analytics_summary, usernames_output, comments_output, likes_chronology_output, str(sum(map(int, likes)))
    
    except Exception as e:
        logger.error(f"Error in analyze_post: {e}", exc_info=True)
        return str(e), "", "", "", "0"

# Создаем интерфейс Gradio
iface = gr.Interface(
    fn=analyze_post,
    inputs=[
        gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
        gr.Textbox(label="Link to Post"),
        gr.Number(label="Likes", value=0),
        gr.Textbox(label="Post Date"),
        gr.Textbox(label="Description", lines=3),
        gr.Number(label="Total Comment Count", value=0),
        gr.Textbox(label="All Comments", lines=10)
    ],
    outputs=[
        gr.Textbox(label="Analytics Summary", lines=20),
        gr.Textbox(label="Usernames"),
        gr.Textbox(label="Comments"),
        gr.Textbox(label="Likes Chronology"),
        gr.Textbox(label="Total Likes on Comments")
    ],
    title="Enhanced Instagram Comment Analyzer",
    description="Анализатор комментариев Instagram с расширенной аналитикой и CSV-форматированием"
)

if __name__ == "__main__":
    iface.launch()