File size: 12,738 Bytes
b4bbaee cbff93c e5c8ff6 282dd48 978ab36 cbff93c 282dd48 e5c8ff6 cbff93c 282dd48 cbff93c 282dd48 b4bbaee 282dd48 e5c8ff6 282dd48 978ab36 e5c8ff6 282dd48 978ab36 282dd48 978ab36 282dd48 e5c8ff6 282dd48 978ab36 282dd48 e5c8ff6 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 e5c8ff6 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 e5c8ff6 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 cbff93c 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 b4bbaee cbff93c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import gradio as gr
import re
from collections import Counter
from datetime import datetime
import emoji
import logging
from typing import Tuple, List, Optional
import statistics
import csv
from textblob import TextBlob
import numpy as np
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def clean_text(text):
"""Очищает текст от лишних пробелов и переносов строк"""
return ' '.join(text.split())
def count_emojis(text):
"""Подсчитывает количество эмодзи в тексте"""
return len([c for c in text if c in emoji.EMOJI_DATA])
def extract_mentions(text):
"""Извлекает упоминания пользователей из текста"""
return re.findall(r'@[\w\.]+', text)
def get_comment_words(text):
"""Получает список слов из комментария для анализа"""
words = re.findall(r'\w+', text.lower())
return [w for w in words if len(w) > 2]
def analyze_sentiment(text):
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ']
negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
'разочарован', 'печаль', 'грустно']
text_lower = text.lower()
positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
exclamation_count = text.count('!')
positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
# Добавляем анализ через TextBlob для более точной оценки
blob = TextBlob(text)
sentiment_score = blob.sentiment.polarity
# Комбинируем оба подхода
final_score = (positive_count - negative_count) + sentiment_score
if final_score > 0:
return 'positive'
elif final_score < 0:
return 'negative'
return 'neutral'
def extract_comment_data(comment_text):
"""
Извлекает данные из отдельного комментария
"""
try:
# Проверка на скрытый комментарий
if 'Скрыто алгоритмами Instagram' in comment_text:
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
if username_match:
return username_match.group(1).strip(), "", 0, 0
# Извлекаем имя пользователя
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
if not username_match:
return None, None, 0, 0
username = username_match.group(1).strip()
# Улучшенное извлечение текста комментария
comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
if comment_match:
comment = clean_text(comment_match.group(1))
comment = re.sub(fr'^{re.escape(username)}\s*', '', comment)
comment = re.sub(r'^@[\w\.]+ ', '', comment)
else:
comment = ""
# Извлекаем количество недель
week_match = re.search(r'(\d+) нед\.', comment_text)
weeks = int(week_match.group(1)) if week_match else 0
# Извлекаем лайки с улучшенным поиском
likes = 0
likes_patterns = [
r"(\d+) отметк[аи] \"Нравится\"",
r"Нравится: (\d+)",
r"\"Нравится\": (\d+)",
]
for pattern in likes_patterns:
likes_match = re.search(pattern, comment_text)
if likes_match:
likes = int(likes_match.group(1))
break
return username, comment.strip(), likes, weeks
except Exception as e:
logger.error(f"Error extracting comment data: {e}")
return None, None, 0, 0
def analyze_post(content_type, link_to_post, post_likes, post_date, description, comment_count, all_comments):
try:
# Улучшенное разделение комментариев
comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
comments_blocks = [block for block in comments_blocks if block.strip()]
# Основные списки для данных
usernames = []
comments = []
likes = []
weeks = []
# Дополнительные метрики
total_emojis = 0
mentions = []
sentiments = []
comment_lengths = []
words_per_comment = []
all_words = []
user_engagement = {}
reply_chains = []
current_chain = []
# Обработка каждого комментария
for block in comments_blocks:
username, comment, like_count, week_number = extract_comment_data(block)
if username and (comment is not None):
usernames.append(username)
comments.append(comment)
likes.append(str(like_count))
weeks.append(week_number)
# Базовые метрики
total_emojis += count_emojis(comment)
comment_mentions = extract_mentions(comment)
mentions.extend(comment_mentions)
sentiment = analyze_sentiment(comment)
sentiments.append(sentiment)
comment_lengths.append(len(comment))
# Анализ цепочек ответов
if comment_mentions:
current_chain.append((username, comment_mentions[0]))
else:
if current_chain:
reply_chains.append(current_chain)
current_chain = []
# Расширенные метрики
words = get_comment_words(comment)
words_per_comment.append(len(words))
all_words.extend(words)
# Статистика пользователя
if username not in user_engagement:
user_engagement[username] = {
'comments': 0,
'total_likes': 0,
'emoji_usage': 0,
'avg_length': 0,
'sentiments': [],
'mentions_received': 0,
'mentions_made': len(comment_mentions),
'response_time': []
}
user_stats = user_engagement[username]
user_stats['comments'] += 1
user_stats['total_likes'] += like_count
user_stats['emoji_usage'] += count_emojis(comment)
user_stats['avg_length'] += len(comment)
user_stats['sentiments'].append(sentiment)
# Финализируем цепочки ответов
if current_chain:
reply_chains.append(current_chain)
# Обновляем статистику пользователей
for username in user_engagement:
stats = user_engagement[username]
stats['avg_length'] /= stats['comments']
stats['engagement_rate'] = stats['total_likes'] / stats['comments']
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
stats['mentions_received'] = sum(1 for m in mentions if m == f'@{username}')
# Экспериментальная аналитика
experimental_metrics = {
'conversation_depth': len(max(reply_chains, key=len)) if reply_chains else 0,
'avg_response_time': np.mean([c['avg_length'] for c in user_engagement.values()]),
'engagement_consistency': np.std([c['comments'] for c in user_engagement.values()]),
'user_interaction_score': len([c for c in comments if any(mention in c for mention in mentions)]) / len(comments),
'sentiment_volatility': np.std([1 if s == 'positive' else -1 if s == 'negative' else 0 for s in sentiments]),
}
# Форматируем данные для CSV
csv_data = {
'post_url': link_to_post,
'total_comments': len(comments),
'total_likes': sum(map(int, likes)),
'avg_likes_per_comment': sum(map(int, likes)) / len(comments),
'unique_users': len(set(usernames)),
'emoji_rate': total_emojis / len(comments),
'avg_comment_length': sum(comment_lengths) / len(comments),
'positive_sentiment_ratio': sum(1 for s in sentiments if s == 'positive') / len(sentiments),
'mention_rate': len(mentions) / len(comments),
'conversation_depth': experimental_metrics['conversation_depth'],
'user_interaction_score': experimental_metrics['user_interaction_score'],
'sentiment_volatility': experimental_metrics['sentiment_volatility'],
}
# Форматируем вывод для CSV
csv_output = ",".join([f"{k}:{v}" for k, v in csv_data.items()])
# Форматируем детальную аналитику
analytics_summary = (
f"CSV_DATA\n{csv_output}\n\n"
f"DETAILED_ANALYTICS\n"
f"Content Type: {content_type}\n"
f"Link to Post: {link_to_post}\n\n"
f"BASIC_STATS\n"
f"Total Comments: {len(comments)}\n"
f"Total Likes: {sum(map(int, likes))}\n"
f"Unique Users: {len(set(usernames))}\n"
f"Activity Period: {max(weeks)}-{min(weeks)} weeks\n\n"
f"CONTENT_ANALYSIS\n"
f"Avg Comment Length: {sum(comment_lengths) / len(comments):.1f}\n"
f"Total Emojis: {total_emojis}\n"
f"Sentiment Distribution: {Counter(sentiments)}\n\n"
f"EXPERIMENTAL_METRICS\n"
f"Conversation Depth: {experimental_metrics['conversation_depth']}\n"
f"User Interaction Score: {experimental_metrics['user_interaction_score']:.2f}\n"
f"Sentiment Volatility: {experimental_metrics['sentiment_volatility']:.2f}\n"
f"Engagement Consistency: {experimental_metrics['engagement_consistency']:.2f}\n"
)
return analytics_summary, usernames_output, comments_output, likes_chronology_output, str(sum(map(int, likes)))
except Exception as e:
logger.error(f"Error in analyze_post: {e}", exc_info=True)
return str(e), "", "", "", "0"
# Создаем интерфейс Gradio
iface = gr.Interface(
fn=analyze_post,
inputs=[
gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
gr.Textbox(label="Link to Post"),
gr.Number(label="Likes", value=0),
gr.Textbox(label="Post Date"),
gr.Textbox(label="Description", lines=3),
gr.Number(label="Total Comment Count", value=0),
gr.Textbox(label="All Comments", lines=10)
],
outputs=[
gr.Textbox(label="Analytics Summary", lines=20),
gr.Textbox(label="Usernames"),
gr.Textbox(label="Comments"),
gr.Textbox(label="Likes Chronology"),
gr.Textbox(label="Total Likes on Comments")
],
title="Enhanced Instagram Comment Analyzer",
description="Анализатор комментариев Instagram с расширенной аналитикой и CSV-форматированием"
)
if __name__ == "__main__":
iface.launch() |