File size: 12,516 Bytes
8c8dfe8
b4bbaee
cbff93c
282dd48
8c8dfe8
 
 
8a11e5e
8c8dfe8
cbff93c
e5c8ff6
 
cbff93c
8c8dfe8
 
 
 
 
6bdcb96
8c8dfe8
 
 
282dd48
8c8dfe8
 
 
6bdcb96
8c8dfe8
 
 
 
 
 
 
 
 
 
 
 
282dd48
8c8dfe8
 
 
 
 
 
282dd48
8c8dfe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c8ff6
8c8dfe8
 
 
 
6bdcb96
 
8c8dfe8
 
 
6bdcb96
 
8c8dfe8
 
 
282dd48
 
6bdcb96
 
8c8dfe8
 
 
6bdcb96
 
 
 
 
 
 
8c8dfe8
282dd48
8c8dfe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282dd48
8c8dfe8
 
 
 
 
 
6bdcb96
8c8dfe8
 
 
 
 
 
 
6bdcb96
8c8dfe8
 
 
 
 
 
 
 
e5c8ff6
6bdcb96
 
8c8dfe8
282dd48
8c8dfe8
 
6bdcb96
 
 
 
8c8dfe8
 
 
282dd48
8c8dfe8
 
 
8a11e5e
8c8dfe8
6bdcb96
8a11e5e
8c8dfe8
 
282dd48
8c8dfe8
 
 
 
 
 
 
 
282dd48
8c8dfe8
 
 
 
 
 
 
 
978ab36
282dd48
8c8dfe8
 
282dd48
8c8dfe8
 
 
 
 
 
 
 
 
 
 
 
282dd48
 
 
 
8a11e5e
282dd48
8c8dfe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282dd48
 
 
978ab36
 
 
 
 
 
 
282dd48
 
 
978ab36
 
 
 
282dd48
978ab36
8c8dfe8
282dd48
b4bbaee
cbff93c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# analyzers.py
import re
import emoji
import statistics
from collections import Counter
from typing import Dict, List, Tuple, Optional
import logging
from io import StringIO
import csv

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class TextAnalyzer:
    """Класс для базового анализа текста"""
    @staticmethod
    def clean_text(text: str) -> str:
        return re.sub(r'\s+', ' ', text).strip()
    
    @staticmethod
    def count_emojis(text: str) -> int:
        return len([c for c in text if c in emoji.EMOJI_DATA])
    
    @staticmethod
    def extract_mentions(text: str) -> List[str]:
        return re.findall(r'@[\w\.]+', text)
    
    @staticmethod
    def get_words(text: str) -> List[str]:
        return [w for w in re.findall(r'\w+', text.lower()) if len(w) > 2]

class SentimentAnalyzer:
    """Класс для анализа тональности"""
    POSITIVE_INDICATORS = {
        'emoji': ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏'],
        'words': ['круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
                 'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший',
                 'amazing', 'wonderful', 'great', 'perfect', 'love', 'beautiful']
    }
    
    NEGATIVE_INDICATORS = {
        'emoji': ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑'],
        'words': ['плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
                 'разочарован', 'печаль', 'грустно', 'bad', 'worst',
                 'terrible', 'awful', 'sad', 'disappointed']
    }
    
    @classmethod
    def analyze(cls, text: str) -> str:
        text_lower = text.lower()
        pos_count = sum(1 for ind in cls.POSITIVE_INDICATORS['emoji'] + cls.POSITIVE_INDICATORS['words'] 
                       if ind in text_lower)
        neg_count = sum(1 for ind in cls.NEGATIVE_INDICATORS['emoji'] + cls.NEGATIVE_INDICATORS['words'] 
                       if ind in text_lower)
        
        exclamation_boost = text.count('!') * 0.5
        if pos_count > neg_count:
            pos_count += exclamation_boost
        elif neg_count > pos_count:
            neg_count += exclamation_boost
            
        return 'positive' if pos_count > neg_count else 'negative' if neg_count > pos_count else 'neutral'

class CommentExtractor:
    """Класс для извлечения данных из комментариев"""
    PATTERNS = {
        'username': [
            r"Фото профиля ([^\n]+)",
            r"^([^\s]+)\s+",
            r"@([^\s]+)\s+"
        ],
        'time': [
            r"(\d+)\s*(?:ч|нед)\.",
            r"(\d+)\s*(?:h|w)",
            r"(\d+)\s*(?:час|hour|week)"
        ],
        'likes': [
            r"(\d+) отметк[аи] \"Нравится\"",
            r"Нравится: (\d+)",
            r"(\d+) отметка \"Нравится\"",
            r"\"Нравится\": (\d+)",
            r"likes?: (\d+)"
        ],
        'metadata': [
            r"Фото профиля [^\n]+\n",
            r"\d+\s*(?:ч|нед|h|w|час|hour|week)\.",
            r"Нравится:?\s*\d+",
            r"\d+ отметк[аи] \"Нравится\"",
            r"Ответить",
            r"Показать перевод",
            r"Скрыть все ответы",
            r"Смотреть все ответы \(\d+\)"
        ]
    }
    
    @classmethod
    def extract_data(cls, comment_text: str) -> Tuple[Optional[str], Optional[str], int, float]:
        try:
            # Извлечение имени пользователя
            username = None
            for pattern in cls.PATTERNS['username']:
                if match := re.search(pattern, comment_text):
                    username = match.group(1).strip()
                    break
            
            if not username:
                return None, None, 0, 0
                
            # Очистка комментария
            comment = comment_text
            for pattern in cls.PATTERNS['metadata'] + [username]:
                comment = re.sub(pattern, '', comment)
            comment = TextAnalyzer.clean_text(comment)
            
            # Извлечение времени
            weeks = 0
            for pattern in cls.PATTERNS['time']:
                if match := re.search(pattern, comment_text):
                    time_value = int(match.group(1))
                    if any(unit in comment_text.lower() for unit in ['нед', 'w', 'week']):
                        weeks = time_value
                    else:
                        weeks = time_value / (24 * 7)
                    break
            
            # Извлечение лайков
            likes = 0
            for pattern in cls.PATTERNS['likes']:
                if match := re.search(pattern, comment_text):
                    likes = int(match.group(1))
                    break
                    
            return username, comment, likes, weeks
            
        except Exception as e:
            logger.error(f"Error extracting comment data: {e}")
            return None, None, 0, 0

class StatsCalculator:
    """Класс для расчета статистики"""
    @staticmethod
    def calculate_period_stats(weeks: List[float], likes: List[str], sentiments: List[str]) -> Dict:
        if not weeks:
            return {}
            
        earliest_week = max(weeks)
        latest_week = min(weeks)
        week_range = earliest_week - latest_week
        
        period_length = week_range / 3 if week_range > 0 else 1
        engagement_periods = {
            'early': [],
            'middle': [],
            'late': []
        }
        
        for i, week in enumerate(weeks):
            if week >= earliest_week - period_length:
                engagement_periods['early'].append(i)
            elif week >= earliest_week - 2 * period_length:
                engagement_periods['middle'].append(i)
            else:
                engagement_periods['late'].append(i)
        
        return {
            period: {
                'comments': len(indices),
                'avg_likes': sum(int(likes[i]) for i in indices) / len(indices) if indices else 0,
                'sentiment_ratio': sum(1 for i in indices if sentiments[i] == 'positive') / len(indices) if indices else 0
            }
            for period, indices in engagement_periods.items()
        }

def analyze_post(content_type: str, link_to_post: str, post_likes: int, post_date: str, 
                description: str, comment_count: int, all_comments: str) -> Tuple[str, str, str, str, str]:
    """Основная функция анализа поста"""
    try:
        # Разделение на комментарии
        comment_patterns = '|'.join([
            r"(?=Фото профиля)",
            r"(?=\n\s*[a-zA-Z0-9._]+\s+[^\n]+\n)",
            r"(?=^[a-zA-Z0-9._]+\s+[^\n]+\n)",
            r"(?=@[a-zA-Z0-9._]+\s+[^\n]+\n)"
        ])
        comments_blocks = [block.strip() for block in re.split(comment_patterns, all_comments) 
                         if block and block.strip() and 'Скрыто алгоритмами Instagram' not in block]
        
        # Извлечение данных
        data = [CommentExtractor.extract_data(block) for block in comments_blocks]
        valid_data = [(u, c, l, w) for u, c, l, w in data if all((u, c))]
        
        if not valid_data:
            return "No comments found", "", "", "", "0"
            
        usernames, comments, likes, weeks = zip(*valid_data)
        likes = [str(l) for l in likes]
        
        # Анализ комментариев
        comment_stats = {
            'lengths': [len(c) for c in comments],
            'words': [len(TextAnalyzer.get_words(c)) for c in comments],
            'emojis': sum(TextAnalyzer.count_emojis(c) for c in comments),
            'mentions': [m for c in comments for m in TextAnalyzer.extract_mentions(c)],
            'sentiments': [SentimentAnalyzer.analyze(c) for c in comments]
        }
        
        # Расчет базовой статистики
        basic_stats = {
            'total_comments': len(comments),
            'avg_length': statistics.mean(comment_stats['lengths']),
            'median_length': statistics.median(comment_stats['lengths']),
            'avg_words': statistics.mean(comment_stats['words']),
            'total_likes': sum(map(int, likes)),
            'avg_likes': statistics.mean(map(int, likes))
        }
        
        # Расчет периодов
        period_stats = StatsCalculator.calculate_period_stats(weeks, likes, comment_stats['sentiments'])
        
        # Создание отчета
        csv_data = create_csv_report(content_type, link_to_post, post_likes, basic_stats,
                                   comment_stats, period_stats, usernames, comment_stats['mentions'])
        
        analytics_summary = create_text_report(basic_stats, comment_stats, period_stats, csv_data)
        
        return (
            analytics_summary,
            "\n".join(usernames),
            "\n".join(comments),
            "\n".join(likes),
            str(basic_stats['total_likes'])
        )
        
    except Exception as e:
        logger.error(f"Error in analyze_post: {e}", exc_info=True)
        return f"Error: {str(e)}", "", "", "", "0"

def create_csv_report(content_type, link, post_likes, basic_stats, comment_stats, period_stats, usernames, mentions):
    """Создание CSV отчета"""
    csv_data = {
        'metadata': {
            'content_type': content_type,
            'link': link,
            'post_likes': post_likes
        },
        'basic_stats': basic_stats,
        'sentiment_stats': dict(Counter(comment_stats['sentiments'])),
        'period_analysis': period_stats,
        'top_users': dict(Counter(usernames).most_common(5)),
        'top_mentioned': dict(Counter(mentions).most_common(5))
    }
    
    output = StringIO()
    writer = csv.writer(output)
    for section, data in csv_data.items():
        writer.writerow([section])
        for key, value in data.items():
            writer.writerow([key, value])
        writer.writerow([])
    return output.getvalue()

def create_text_report(basic_stats, comment_stats, period_stats, csv_data):
    """Создание текстового отчета"""
    sentiment_dist = Counter(comment_stats['sentiments'])
    return (
        f"CSV DATA:\n{csv_data}\n\n"
        f"СТАТИСТИКА:\n"
        f"- Всего комментариев: {basic_stats['total_comments']}\n"
        f"- Среднее лайков: {basic_stats['avg_likes']:.1f}\n"
        f"АНАЛИЗ КОНТЕНТА:\n"
        f"- Средняя длина: {basic_stats['avg_length']:.1f}\n"
        f"- Медиана длины: {basic_stats['median_length']}\n"
        f"- Среднее слов: {basic_stats['avg_words']:.1f}\n"
        f"- Эмодзи: {comment_stats['emojis']}\n"
        f"ТОНАЛЬНОСТЬ:\n"
        f"- Позитив: {sentiment_dist['positive']}\n"
        f"- Нейтрально: {sentiment_dist['neutral']}\n"
        f"- Негатив: {sentiment_dist['negative']}\n"
    )

# Создание интерфейса Gradio
import gradio as gr

iface = gr.Interface(
    fn=analyze_post,
    inputs=[
        gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
        gr.Textbox(label="Link to Post"),
        gr.Number(label="Likes", value=0),
        gr.Textbox(label="Post Date"),
        gr.Textbox(label="Description", lines=3),
        gr.Number(label="Total Comment Count", value=0),
        gr.Textbox(label="All Comments", lines=10)
    ],
    outputs=[
        gr.Textbox(label="Analytics Summary", lines=20),
        gr.Textbox(label="Usernames"),
        gr.Textbox(label="Comments"),
        gr.Textbox(label="Likes Chronology"),
        gr.Textbox(label="Total Likes on Comments")
    ],
    title="Enhanced Instagram Comment Analyzer",
    description="Анализатор комментариев Instagram с расширенной аналитикой"
)

if __name__ == "__main__":
    iface.launch()