Update app.py
Browse files
app.py
CHANGED
|
@@ -7,8 +7,7 @@ import logging
|
|
| 7 |
from typing import Tuple, List, Optional
|
| 8 |
import statistics
|
| 9 |
import csv
|
| 10 |
-
from
|
| 11 |
-
import numpy as np
|
| 12 |
|
| 13 |
# Настройка логирования
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -35,7 +34,7 @@ def analyze_sentiment(text):
|
|
| 35 |
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
|
| 36 |
positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
|
| 37 |
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
|
| 38 |
-
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ']
|
| 39 |
negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
|
| 40 |
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
|
| 41 |
'разочарован', 'печаль', 'грустно']
|
|
@@ -48,38 +47,26 @@ def analyze_sentiment(text):
|
|
| 48 |
positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
|
| 49 |
negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
|
| 50 |
|
| 51 |
-
|
| 52 |
-
blob = TextBlob(text)
|
| 53 |
-
sentiment_score = blob.sentiment.polarity
|
| 54 |
-
|
| 55 |
-
# Комбинируем оба подхода
|
| 56 |
-
final_score = (positive_count - negative_count) + sentiment_score
|
| 57 |
-
|
| 58 |
-
if final_score > 0:
|
| 59 |
return 'positive'
|
| 60 |
-
elif
|
| 61 |
return 'negative'
|
| 62 |
return 'neutral'
|
| 63 |
|
| 64 |
def extract_comment_data(comment_text):
|
| 65 |
-
"""
|
| 66 |
-
Извлекает данные из отдельного комментария
|
| 67 |
-
"""
|
| 68 |
try:
|
| 69 |
-
# Проверка на скрытый комментарий
|
| 70 |
if 'Скрыто алгоритмами Instagram' in comment_text:
|
| 71 |
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
|
| 72 |
if username_match:
|
| 73 |
return username_match.group(1).strip(), "", 0, 0
|
| 74 |
-
|
| 75 |
-
# Извлекаем имя пользователя
|
| 76 |
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
|
| 77 |
if not username_match:
|
| 78 |
return None, None, 0, 0
|
| 79 |
|
| 80 |
username = username_match.group(1).strip()
|
| 81 |
|
| 82 |
-
# Улучшенное извлечение текста комментария
|
| 83 |
comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
|
| 84 |
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
|
| 85 |
if comment_match:
|
|
@@ -89,16 +76,13 @@ def extract_comment_data(comment_text):
|
|
| 89 |
else:
|
| 90 |
comment = ""
|
| 91 |
|
| 92 |
-
# Извлекаем количество недель
|
| 93 |
week_match = re.search(r'(\d+) нед\.', comment_text)
|
| 94 |
weeks = int(week_match.group(1)) if week_match else 0
|
| 95 |
|
| 96 |
-
# Извлекаем лайки с улучшенным поиском
|
| 97 |
likes = 0
|
| 98 |
likes_patterns = [
|
| 99 |
r"(\d+) отметк[аи] \"Нравится\"",
|
| 100 |
r"Нравится: (\d+)",
|
| 101 |
-
r"\"Нравится\": (\d+)",
|
| 102 |
]
|
| 103 |
|
| 104 |
for pattern in likes_patterns:
|
|
@@ -118,13 +102,14 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
| 118 |
comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
|
| 119 |
comments_blocks = [block for block in comments_blocks if block.strip()]
|
| 120 |
|
| 121 |
-
#
|
|
|
|
|
|
|
| 122 |
usernames = []
|
| 123 |
comments = []
|
| 124 |
likes = []
|
| 125 |
weeks = []
|
| 126 |
|
| 127 |
-
# Дополнительные метрики
|
| 128 |
total_emojis = 0
|
| 129 |
mentions = []
|
| 130 |
sentiments = []
|
|
@@ -132,11 +117,12 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
| 132 |
words_per_comment = []
|
| 133 |
all_words = []
|
| 134 |
user_engagement = {}
|
| 135 |
-
reply_chains = []
|
| 136 |
-
current_chain = []
|
| 137 |
|
| 138 |
-
# Обработка
|
| 139 |
for block in comments_blocks:
|
|
|
|
|
|
|
|
|
|
| 140 |
username, comment, like_count, week_number = extract_comment_data(block)
|
| 141 |
if username and (comment is not None):
|
| 142 |
usernames.append(username)
|
|
@@ -144,28 +130,16 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
| 144 |
likes.append(str(like_count))
|
| 145 |
weeks.append(week_number)
|
| 146 |
|
| 147 |
-
# Базовые метрики
|
| 148 |
total_emojis += count_emojis(comment)
|
| 149 |
-
|
| 150 |
-
mentions.extend(comment_mentions)
|
| 151 |
sentiment = analyze_sentiment(comment)
|
| 152 |
sentiments.append(sentiment)
|
| 153 |
comment_lengths.append(len(comment))
|
| 154 |
|
| 155 |
-
# Анализ цепочек ответов
|
| 156 |
-
if comment_mentions:
|
| 157 |
-
current_chain.append((username, comment_mentions[0]))
|
| 158 |
-
else:
|
| 159 |
-
if current_chain:
|
| 160 |
-
reply_chains.append(current_chain)
|
| 161 |
-
current_chain = []
|
| 162 |
-
|
| 163 |
-
# Расширенные метрики
|
| 164 |
words = get_comment_words(comment)
|
| 165 |
words_per_comment.append(len(words))
|
| 166 |
all_words.extend(words)
|
| 167 |
|
| 168 |
-
# Статистика пользователя
|
| 169 |
if username not in user_engagement:
|
| 170 |
user_engagement[username] = {
|
| 171 |
'comments': 0,
|
|
@@ -173,9 +147,7 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
| 173 |
'emoji_usage': 0,
|
| 174 |
'avg_length': 0,
|
| 175 |
'sentiments': [],
|
| 176 |
-
'
|
| 177 |
-
'mentions_made': len(comment_mentions),
|
| 178 |
-
'response_time': []
|
| 179 |
}
|
| 180 |
user_stats = user_engagement[username]
|
| 181 |
user_stats['comments'] += 1
|
|
@@ -183,74 +155,141 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
| 183 |
user_stats['emoji_usage'] += count_emojis(comment)
|
| 184 |
user_stats['avg_length'] += len(comment)
|
| 185 |
user_stats['sentiments'].append(sentiment)
|
|
|
|
| 186 |
|
| 187 |
-
#
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
| 192 |
for username in user_engagement:
|
| 193 |
stats = user_engagement[username]
|
| 194 |
stats['avg_length'] /= stats['comments']
|
| 195 |
stats['engagement_rate'] = stats['total_likes'] / stats['comments']
|
| 196 |
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
|
| 197 |
-
stats['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
# Экспериментальная аналитика
|
| 200 |
-
|
| 201 |
-
'
|
| 202 |
-
'
|
| 203 |
-
'
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
}
|
| 207 |
|
| 208 |
-
#
|
| 209 |
csv_data = {
|
| 210 |
-
'
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
'
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
}
|
| 223 |
|
| 224 |
-
#
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
#
|
| 228 |
analytics_summary = (
|
| 229 |
-
f"
|
| 230 |
-
f"
|
| 231 |
-
f"
|
| 232 |
-
f"
|
| 233 |
-
f"
|
| 234 |
-
f"
|
| 235 |
-
f"
|
| 236 |
-
f"
|
| 237 |
-
f"
|
| 238 |
-
f"
|
| 239 |
-
f"
|
| 240 |
-
f"
|
| 241 |
-
f"
|
| 242 |
-
f"
|
| 243 |
-
f"
|
| 244 |
-
f"
|
| 245 |
-
f"
|
| 246 |
-
f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
)
|
| 248 |
|
| 249 |
-
return analytics_summary,
|
| 250 |
|
| 251 |
except Exception as e:
|
| 252 |
logger.error(f"Error in analyze_post: {e}", exc_info=True)
|
| 253 |
-
return str(e), "", "", "", "0"
|
| 254 |
|
| 255 |
# Создаем интерфейс Gradio
|
| 256 |
iface = gr.Interface(
|
|
|
|
| 7 |
from typing import Tuple, List, Optional
|
| 8 |
import statistics
|
| 9 |
import csv
|
| 10 |
+
from io import StringIO
|
|
|
|
| 11 |
|
| 12 |
# Настройка логирования
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 34 |
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
|
| 35 |
positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
|
| 36 |
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
|
| 37 |
+
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший']
|
| 38 |
negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
|
| 39 |
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
|
| 40 |
'разочарован', 'печаль', 'грустно']
|
|
|
|
| 47 |
positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
|
| 48 |
negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
|
| 49 |
|
| 50 |
+
if positive_count > negative_count:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
return 'positive'
|
| 52 |
+
elif negative_count > positive_count:
|
| 53 |
return 'negative'
|
| 54 |
return 'neutral'
|
| 55 |
|
| 56 |
def extract_comment_data(comment_text):
|
| 57 |
+
"""Извлекает данные из отдельного комментария"""
|
|
|
|
|
|
|
| 58 |
try:
|
|
|
|
| 59 |
if 'Скрыто алгоритмами Instagram' in comment_text:
|
| 60 |
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
|
| 61 |
if username_match:
|
| 62 |
return username_match.group(1).strip(), "", 0, 0
|
| 63 |
+
|
|
|
|
| 64 |
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
|
| 65 |
if not username_match:
|
| 66 |
return None, None, 0, 0
|
| 67 |
|
| 68 |
username = username_match.group(1).strip()
|
| 69 |
|
|
|
|
| 70 |
comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
|
| 71 |
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
|
| 72 |
if comment_match:
|
|
|
|
| 76 |
else:
|
| 77 |
comment = ""
|
| 78 |
|
|
|
|
| 79 |
week_match = re.search(r'(\d+) нед\.', comment_text)
|
| 80 |
weeks = int(week_match.group(1)) if week_match else 0
|
| 81 |
|
|
|
|
| 82 |
likes = 0
|
| 83 |
likes_patterns = [
|
| 84 |
r"(\d+) отметк[аи] \"Нравится\"",
|
| 85 |
r"Нравится: (\d+)",
|
|
|
|
| 86 |
]
|
| 87 |
|
| 88 |
for pattern in likes_patterns:
|
|
|
|
| 102 |
comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
|
| 103 |
comments_blocks = [block for block in comments_blocks if block.strip()]
|
| 104 |
|
| 105 |
+
# Подсчет скрытых комментариев
|
| 106 |
+
hidden_comments = len(re.findall(r'Скрыто алгоритмами Instagram', all_comments))
|
| 107 |
+
|
| 108 |
usernames = []
|
| 109 |
comments = []
|
| 110 |
likes = []
|
| 111 |
weeks = []
|
| 112 |
|
|
|
|
| 113 |
total_emojis = 0
|
| 114 |
mentions = []
|
| 115 |
sentiments = []
|
|
|
|
| 117 |
words_per_comment = []
|
| 118 |
all_words = []
|
| 119 |
user_engagement = {}
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# Обработка комментариев
|
| 122 |
for block in comments_blocks:
|
| 123 |
+
if 'Скрыто алгоритмами Instagram' in block:
|
| 124 |
+
continue
|
| 125 |
+
|
| 126 |
username, comment, like_count, week_number = extract_comment_data(block)
|
| 127 |
if username and (comment is not None):
|
| 128 |
usernames.append(username)
|
|
|
|
| 130 |
likes.append(str(like_count))
|
| 131 |
weeks.append(week_number)
|
| 132 |
|
|
|
|
| 133 |
total_emojis += count_emojis(comment)
|
| 134 |
+
mentions.extend(extract_mentions(comment))
|
|
|
|
| 135 |
sentiment = analyze_sentiment(comment)
|
| 136 |
sentiments.append(sentiment)
|
| 137 |
comment_lengths.append(len(comment))
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
words = get_comment_words(comment)
|
| 140 |
words_per_comment.append(len(words))
|
| 141 |
all_words.extend(words)
|
| 142 |
|
|
|
|
| 143 |
if username not in user_engagement:
|
| 144 |
user_engagement[username] = {
|
| 145 |
'comments': 0,
|
|
|
|
| 147 |
'emoji_usage': 0,
|
| 148 |
'avg_length': 0,
|
| 149 |
'sentiments': [],
|
| 150 |
+
'weeks': [] # Добавлено для анализа временной активности
|
|
|
|
|
|
|
| 151 |
}
|
| 152 |
user_stats = user_engagement[username]
|
| 153 |
user_stats['comments'] += 1
|
|
|
|
| 155 |
user_stats['emoji_usage'] += count_emojis(comment)
|
| 156 |
user_stats['avg_length'] += len(comment)
|
| 157 |
user_stats['sentiments'].append(sentiment)
|
| 158 |
+
user_stats['weeks'].append(week_number)
|
| 159 |
|
| 160 |
+
# Проверка количества комментариев
|
| 161 |
+
total_comments = len(comments)
|
| 162 |
+
if total_comments != comment_count:
|
| 163 |
+
logger.warning(f"Found {total_comments} comments, but expected {comment_count}")
|
| 164 |
+
|
| 165 |
+
# Обновление статистики пользователей
|
| 166 |
for username in user_engagement:
|
| 167 |
stats = user_engagement[username]
|
| 168 |
stats['avg_length'] /= stats['comments']
|
| 169 |
stats['engagement_rate'] = stats['total_likes'] / stats['comments']
|
| 170 |
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
|
| 171 |
+
stats['activity_period'] = max(stats['weeks']) - min(stats['weeks']) if stats['weeks'] else 0
|
| 172 |
+
|
| 173 |
+
# Расчет базовой статистики
|
| 174 |
+
avg_comment_length = sum(comment_lengths) / total_comments
|
| 175 |
+
sentiment_distribution = Counter(sentiments)
|
| 176 |
+
most_active_users = Counter(usernames).most_common(5)
|
| 177 |
+
most_mentioned = Counter(mentions).most_common(5)
|
| 178 |
+
avg_likes = sum(map(int, likes)) / len(likes) if likes else 0
|
| 179 |
+
earliest_week = max(weeks) if weeks else 0
|
| 180 |
+
latest_week = min(weeks) if weeks else 0
|
| 181 |
+
|
| 182 |
+
# Расширенная статистика
|
| 183 |
+
median_comment_length = statistics.median(comment_lengths)
|
| 184 |
+
avg_words_per_comment = sum(words_per_comment) / total_comments
|
| 185 |
+
common_words = Counter(all_words).most_common(10)
|
| 186 |
|
| 187 |
# Экспериментальная аналитика
|
| 188 |
+
engagement_periods = {
|
| 189 |
+
'early': [],
|
| 190 |
+
'middle': [],
|
| 191 |
+
'late': []
|
| 192 |
+
}
|
| 193 |
+
week_range = max(weeks) - min(weeks) if weeks else 0
|
| 194 |
+
period_length = week_range / 3 if week_range > 0 else 1
|
| 195 |
+
|
| 196 |
+
for i, week in enumerate(weeks):
|
| 197 |
+
if week >= max(weeks) - period_length:
|
| 198 |
+
engagement_periods['early'].append(i)
|
| 199 |
+
elif week >= max(weeks) - 2 * period_length:
|
| 200 |
+
engagement_periods['middle'].append(i)
|
| 201 |
+
else:
|
| 202 |
+
engagement_periods['late'].append(i)
|
| 203 |
+
|
| 204 |
+
period_stats = {
|
| 205 |
+
period: {
|
| 206 |
+
'comments': len(indices),
|
| 207 |
+
'avg_likes': sum(int(likes[i]) for i in indices) / len(indices) if indices else 0,
|
| 208 |
+
'sentiment_ratio': sum(1 for i in indices if sentiments[i] == 'positive') / len(indices) if indices else 0
|
| 209 |
+
}
|
| 210 |
+
for period, indices in engagement_periods.items()
|
| 211 |
}
|
| 212 |
|
| 213 |
+
# Подготовка данных для CSV
|
| 214 |
csv_data = {
|
| 215 |
+
'metadata': {
|
| 216 |
+
'content_type': content_type,
|
| 217 |
+
'link': link_to_post,
|
| 218 |
+
'post_likes': post_likes,
|
| 219 |
+
'post_date': post_date,
|
| 220 |
+
'total_comments': total_comments,
|
| 221 |
+
'expected_comments': comment_count,
|
| 222 |
+
'hidden_comments': hidden_comments
|
| 223 |
+
},
|
| 224 |
+
'basic_stats': {
|
| 225 |
+
'avg_comment_length': avg_comment_length,
|
| 226 |
+
'median_comment_length': median_comment_length,
|
| 227 |
+
'avg_words': avg_words_per_comment,
|
| 228 |
+
'total_emojis': total_emojis,
|
| 229 |
+
'avg_likes': avg_likes
|
| 230 |
+
},
|
| 231 |
+
'sentiment_stats': {
|
| 232 |
+
'positive': sentiment_distribution['positive'],
|
| 233 |
+
'neutral': sentiment_distribution['neutral'],
|
| 234 |
+
'negative': sentiment_distribution['negative']
|
| 235 |
+
},
|
| 236 |
+
'period_analysis': period_stats,
|
| 237 |
+
'top_users': dict(most_active_users),
|
| 238 |
+
'top_mentioned': dict(most_mentioned)
|
| 239 |
}
|
| 240 |
|
| 241 |
+
# Создаем CSV строку
|
| 242 |
+
output = StringIO()
|
| 243 |
+
writer = csv.writer(output)
|
| 244 |
+
for section, data in csv_data.items():
|
| 245 |
+
writer.writerow([section])
|
| 246 |
+
for key, value in data.items():
|
| 247 |
+
writer.writerow([key, value])
|
| 248 |
+
writer.writerow([])
|
| 249 |
+
csv_output = output.getvalue()
|
| 250 |
|
| 251 |
+
# Формируем текстовый отчет
|
| 252 |
analytics_summary = (
|
| 253 |
+
f"CSV DATA:\n{csv_output}\n\n"
|
| 254 |
+
f"ДЕТАЛЬНЫЙ АНАЛИЗ:\n"
|
| 255 |
+
f"Контент: {content_type}\n"
|
| 256 |
+
f"Ссылка: {link_to_post}\n\n"
|
| 257 |
+
f"СТАТИСТИКА:\n"
|
| 258 |
+
f"- Всего комментариев: {total_comments} (ожидалось: {comment_count})\n"
|
| 259 |
+
f"- Скрытых комментариев: {hidden_comments}\n"
|
| 260 |
+
f"- Всего лайков: {sum(map(int, likes))}\n"
|
| 261 |
+
f"- Среднее лайков: {avg_likes:.1f}\n"
|
| 262 |
+
f"- Период: {earliest_week}-{latest_week} недель\n\n"
|
| 263 |
+
f"АНАЛИЗ КОНТЕНТА:\n"
|
| 264 |
+
f"- Средняя длина: {avg_comment_length:.1f} символов\n"
|
| 265 |
+
f"- Медиана длины: {median_comment_length} символов\n"
|
| 266 |
+
f"- Среднее слов: {avg_words_per_comment:.1f}\n"
|
| 267 |
+
f"- Эмодзи: {total_emojis}\n"
|
| 268 |
+
f"- Тональность:\n"
|
| 269 |
+
f" * Позитив: {sentiment_distribution['positive']}\n"
|
| 270 |
+
f" * Нейтрально: {sentiment_distribution['neutral']}\n"
|
| 271 |
+
f" * Негатив: {sentiment_distribution['negative']}\n\n"
|
| 272 |
+
f"ПОПУЛЯРНЫЕ СЛОВА:\n"
|
| 273 |
+
+ "\n".join([f"- {word}: {count}" for word, count in common_words]) + "\n\n"
|
| 274 |
+
f"АКТИВНЫЕ ПОЛЬЗОВАТЕЛИ:\n"
|
| 275 |
+
+ "\n".join([f"- {user}: {count}" for user, count in most_active_users]) + "\n\n"
|
| 276 |
+
f"УПОМИНАНИЯ:\n"
|
| 277 |
+
+ "\n".join([f"- {user}: {count}" for user, count in most_mentioned if user]) + "\n\n"
|
| 278 |
+
f"АНАЛИЗ ПО ПЕРИОДАМ:\n"
|
| 279 |
+
+ "\n".join([f"- {period}: {stats['comments']} комментариев, {stats['avg_likes']:.1f} лайков/коммент, "
|
| 280 |
+
f"{stats['sentiment_ratio']*100:.1f}% позитивных"
|
| 281 |
+
for period, stats in period_stats.items()]) + "\n\n"
|
| 282 |
+
f"ЭКСПЕРИМЕНТАЛЬНАЯ АНАЛИТИКА:\n"
|
| 283 |
+
f"- Самый активный период: {max(period_stats.items(), key=lambda x: x[1]['comments'])[0]}\n"
|
| 284 |
+
f"- Наиболее позитивный период: {max(period_stats.items(), key=lambda x: x[1]['sentiment_ratio'])[0]}\n"
|
| 285 |
+
f"- Период с макс. вовлеченностью: {max(period_stats.items(), key=lambda x: x[1]['avg_likes'])[0]}"
|
| 286 |
)
|
| 287 |
|
| 288 |
+
return analytics_summary, "\n".join(usernames), "\n".join(comments), "\n".join(likes), str(sum(map(int, likes)))
|
| 289 |
|
| 290 |
except Exception as e:
|
| 291 |
logger.error(f"Error in analyze_post: {e}", exc_info=True)
|
| 292 |
+
return f"Error: {str(e)}", "", "", "", "0"
|
| 293 |
|
| 294 |
# Создаем интерфейс Gradio
|
| 295 |
iface = gr.Interface(
|