Spaces:
Sleeping
Sleeping
File size: 2,606 Bytes
c634a8f 32c15f7 bfa46f3 be7cd6f b2183c1 b81a54b 8f74814 b81a54b 7e7a085 edf589b b81a54b edf589b b81a54b b85b6e0 5075f8a 7e7a085 be7cd6f 03a30d8 be7cd6f 32c15f7 c634a8f 32c15f7 c634a8f 32c15f7 c634a8f 32c15f7 c634a8f 32c15f7 c634a8f 32c15f7 c634a8f 32c15f7 c634a8f 32c15f7 c634a8f 32c15f7 03a30d8 32c15f7 c634a8f 32c15f7 6450ec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
# Week - 3 Assignment - Integrate Traditional Chatbot with AI Service Project (Transformers) Praveen Kumar Parimi
#importing the required libraries including transformers
import gradio as gr
from huggingface_hub import InferenceClient
#from transformers import pipeline
import torch
# Use a pipeline as a high-level helper
from transformers import pipeline, AutoModel
model_name = "bmas10/DeepSeek-Llama-8-GGUF"
model = AutoModel.from_pretrained(model_name)
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model=model)
pipe(messages)
'''
def chat(input_text, history=[]):
history.append(input_text)
prompt = "\n".join(history) + "\nAI:" # Simple conversational format
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_length=512, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True)
history.append(f"AI: {response}")
return response, history
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
print("starting Praveen's smarter chatbot...")
"""
The transformer model used here is Microsoft-trained Phi-3.5-mini-instruct
"""
#model_name = "microsoft/Phi-3.5-mini-instruct"
chat_model = pipeline("text-generation", model=model_name)
print("defining the chat_response function")
def chat_response(
message,
history: list[tuple[str, str]],
system_message,
max_tokens
):
print("Inside chat_response progressing...")
messages = [{"role": "system", "content": system_message}]
print ("System Messages", messages)
messages.append({"role": "user", "content": message})
print ("Messages after adding user messages", messages)
response = chat_model(messages) #Passing system and user messages to the transformer model Phi-3.5-mini-instruct to get smarter responses
print("Response received from model",response)
return response[-1]['generated_text'][-1]['content']
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
chat,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
],
)
if __name__ == "__main__":
demo.launch()
''' |