Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,11 @@ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float
|
|
19 |
def chat(input_text, history=[]):
|
20 |
history.append(input_text)
|
21 |
prompt = "\n".join(history) + "\nAI:" # Simple conversational format
|
22 |
-
inputs = tokenizer(prompt,
|
|
|
|
|
|
|
|
|
23 |
|
24 |
"""
|
25 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -63,7 +67,7 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
63 |
"""
|
64 |
|
65 |
demo = gr.ChatInterface(
|
66 |
-
|
67 |
additional_inputs=[
|
68 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
69 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
|
|
19 |
def chat(input_text, history=[]):
|
20 |
history.append(input_text)
|
21 |
prompt = "\n".join(history) + "\nAI:" # Simple conversational format
|
22 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
23 |
+
output = model.generate(**inputs, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
24 |
+
response = tokenizer.decode(output[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True)
|
25 |
+
history.append(f"AI: {response}")
|
26 |
+
return response, history
|
27 |
|
28 |
"""
|
29 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
67 |
"""
|
68 |
|
69 |
demo = gr.ChatInterface(
|
70 |
+
chat,
|
71 |
additional_inputs=[
|
72 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
73 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|