Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#400
by
Basaram
- opened
app.py
CHANGED
@@ -1,139 +1,25 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
import spaces
|
5 |
-
import torch
|
6 |
-
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
16 |
-
torch.cuda.empty_cache()
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
seed = random.randint(0, MAX_SEED)
|
27 |
-
generator = torch.Generator().manual_seed(seed)
|
28 |
-
|
29 |
-
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
30 |
-
prompt=prompt,
|
31 |
-
guidance_scale=guidance_scale,
|
32 |
-
num_inference_steps=num_inference_steps,
|
33 |
-
width=width,
|
34 |
-
height=height,
|
35 |
-
generator=generator,
|
36 |
-
output_type="pil",
|
37 |
-
good_vae=good_vae,
|
38 |
-
):
|
39 |
-
yield img, seed
|
40 |
-
|
41 |
-
examples = [
|
42 |
-
"a tiny astronaut hatching from an egg on the moon",
|
43 |
-
"a cat holding a sign that says hello world",
|
44 |
-
"an anime illustration of a wiener schnitzel",
|
45 |
-
]
|
46 |
-
|
47 |
-
css="""
|
48 |
-
#col-container {
|
49 |
-
margin: 0 auto;
|
50 |
-
max-width: 520px;
|
51 |
-
}
|
52 |
-
"""
|
53 |
-
|
54 |
-
with gr.Blocks(css=css) as demo:
|
55 |
-
|
56 |
-
with gr.Column(elem_id="col-container"):
|
57 |
-
gr.Markdown(f"""# FLUX.1 [dev]
|
58 |
-
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
59 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
60 |
-
""")
|
61 |
-
|
62 |
-
with gr.Row():
|
63 |
-
|
64 |
-
prompt = gr.Text(
|
65 |
-
label="Prompt",
|
66 |
-
show_label=False,
|
67 |
-
max_lines=1,
|
68 |
-
placeholder="Enter your prompt",
|
69 |
-
container=False,
|
70 |
-
)
|
71 |
-
|
72 |
-
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
-
result = gr.Image(label="Result", show_label=False)
|
75 |
-
|
76 |
-
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
-
seed = gr.Slider(
|
79 |
-
label="Seed",
|
80 |
-
minimum=0,
|
81 |
-
maximum=MAX_SEED,
|
82 |
-
step=1,
|
83 |
-
value=0,
|
84 |
-
)
|
85 |
-
|
86 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
87 |
-
|
88 |
-
with gr.Row():
|
89 |
-
|
90 |
-
width = gr.Slider(
|
91 |
-
label="Width",
|
92 |
-
minimum=256,
|
93 |
-
maximum=MAX_IMAGE_SIZE,
|
94 |
-
step=32,
|
95 |
-
value=1024,
|
96 |
-
)
|
97 |
-
|
98 |
-
height = gr.Slider(
|
99 |
-
label="Height",
|
100 |
-
minimum=256,
|
101 |
-
maximum=MAX_IMAGE_SIZE,
|
102 |
-
step=32,
|
103 |
-
value=1024,
|
104 |
-
)
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
-
|
108 |
-
guidance_scale = gr.Slider(
|
109 |
-
label="Guidance Scale",
|
110 |
-
minimum=1,
|
111 |
-
maximum=15,
|
112 |
-
step=0.1,
|
113 |
-
value=3.5,
|
114 |
-
)
|
115 |
-
|
116 |
-
num_inference_steps = gr.Slider(
|
117 |
-
label="Number of inference steps",
|
118 |
-
minimum=1,
|
119 |
-
maximum=50,
|
120 |
-
step=1,
|
121 |
-
value=28,
|
122 |
-
)
|
123 |
-
|
124 |
-
gr.Examples(
|
125 |
-
examples = examples,
|
126 |
-
fn = infer,
|
127 |
-
inputs = [prompt],
|
128 |
-
outputs = [result, seed],
|
129 |
-
cache_examples="lazy"
|
130 |
-
)
|
131 |
-
|
132 |
-
gr.on(
|
133 |
-
triggers=[run_button.click, prompt.submit],
|
134 |
-
fn = infer,
|
135 |
-
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
136 |
-
outputs = [result, seed]
|
137 |
)
|
|
|
|
|
138 |
|
139 |
-
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
# Initialize client with Fal.AI provider and your API key (replace below)
|
4 |
+
client = InferenceClient(
|
5 |
+
provider="fal-ai",
|
6 |
+
api_key="your_fal_ai_api_key", # Replace with your actual Fal.AI API key
|
7 |
+
)
|
8 |
|
9 |
+
# Text prompt for image generation
|
10 |
+
prompt = "Astronaut riding a horse"
|
|
|
|
|
11 |
|
12 |
+
# Use a public or your deployed model on Fal.AI
|
13 |
+
model_name = "black-forest-labs/FLUX.1-dev" # Make sure this model is deployed on Fal and accessible
|
14 |
|
15 |
+
try:
|
16 |
+
# Generate image
|
17 |
+
image = client.text_to_image(
|
18 |
+
prompt=prompt,
|
19 |
+
model=model_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
+
# Display the image (if running in Jupyter/Colab)
|
22 |
+
image.show()
|
23 |
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error during inference: {e}")
|