Files changed (1) hide show
  1. app.py +19 -133
app.py CHANGED
@@ -1,139 +1,25 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- import spaces
5
- import torch
6
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
- from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
- from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
 
10
- dtype = torch.bfloat16
11
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
12
 
13
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
- good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
15
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
16
- torch.cuda.empty_cache()
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 2048
20
 
21
- pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
-
23
- @spaces.GPU(duration=75)
24
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
25
- if randomize_seed:
26
- seed = random.randint(0, MAX_SEED)
27
- generator = torch.Generator().manual_seed(seed)
28
-
29
- for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
30
- prompt=prompt,
31
- guidance_scale=guidance_scale,
32
- num_inference_steps=num_inference_steps,
33
- width=width,
34
- height=height,
35
- generator=generator,
36
- output_type="pil",
37
- good_vae=good_vae,
38
- ):
39
- yield img, seed
40
-
41
- examples = [
42
- "a tiny astronaut hatching from an egg on the moon",
43
- "a cat holding a sign that says hello world",
44
- "an anime illustration of a wiener schnitzel",
45
- ]
46
-
47
- css="""
48
- #col-container {
49
- margin: 0 auto;
50
- max-width: 520px;
51
- }
52
- """
53
-
54
- with gr.Blocks(css=css) as demo:
55
-
56
- with gr.Column(elem_id="col-container"):
57
- gr.Markdown(f"""# FLUX.1 [dev]
58
- 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
60
- """)
61
-
62
- with gr.Row():
63
-
64
- prompt = gr.Text(
65
- label="Prompt",
66
- show_label=False,
67
- max_lines=1,
68
- placeholder="Enter your prompt",
69
- container=False,
70
- )
71
-
72
- run_button = gr.Button("Run", scale=0)
73
-
74
- result = gr.Image(label="Result", show_label=False)
75
-
76
- with gr.Accordion("Advanced Settings", open=False):
77
-
78
- seed = gr.Slider(
79
- label="Seed",
80
- minimum=0,
81
- maximum=MAX_SEED,
82
- step=1,
83
- value=0,
84
- )
85
-
86
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
-
88
- with gr.Row():
89
-
90
- width = gr.Slider(
91
- label="Width",
92
- minimum=256,
93
- maximum=MAX_IMAGE_SIZE,
94
- step=32,
95
- value=1024,
96
- )
97
-
98
- height = gr.Slider(
99
- label="Height",
100
- minimum=256,
101
- maximum=MAX_IMAGE_SIZE,
102
- step=32,
103
- value=1024,
104
- )
105
-
106
- with gr.Row():
107
-
108
- guidance_scale = gr.Slider(
109
- label="Guidance Scale",
110
- minimum=1,
111
- maximum=15,
112
- step=0.1,
113
- value=3.5,
114
- )
115
-
116
- num_inference_steps = gr.Slider(
117
- label="Number of inference steps",
118
- minimum=1,
119
- maximum=50,
120
- step=1,
121
- value=28,
122
- )
123
-
124
- gr.Examples(
125
- examples = examples,
126
- fn = infer,
127
- inputs = [prompt],
128
- outputs = [result, seed],
129
- cache_examples="lazy"
130
- )
131
-
132
- gr.on(
133
- triggers=[run_button.click, prompt.submit],
134
- fn = infer,
135
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
- outputs = [result, seed]
137
  )
 
 
138
 
139
- demo.launch()
 
 
1
+ from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
2
 
3
+ # Initialize client with Fal.AI provider and your API key (replace below)
4
+ client = InferenceClient(
5
+ provider="fal-ai",
6
+ api_key="your_fal_ai_api_key", # Replace with your actual Fal.AI API key
7
+ )
8
 
9
+ # Text prompt for image generation
10
+ prompt = "Astronaut riding a horse"
 
 
11
 
12
+ # Use a public or your deployed model on Fal.AI
13
+ model_name = "black-forest-labs/FLUX.1-dev" # Make sure this model is deployed on Fal and accessible
14
 
15
+ try:
16
+ # Generate image
17
+ image = client.text_to_image(
18
+ prompt=prompt,
19
+ model=model_name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  )
21
+ # Display the image (if running in Jupyter/Colab)
22
+ image.show()
23
 
24
+ except Exception as e:
25
+ print(f"Error during inference: {e}")