File size: 7,417 Bytes
40415b8
 
 
a2b6d64
40415b8
d0e2871
40415b8
d0e2871
40415b8
a2b6d64
 
 
40415b8
 
a2b6d64
bcf356c
2044733
40415b8
 
 
20074fe
40415b8
bcf356c
3a8bfcd
 
40415b8
 
2044733
40415b8
bcf356c
6340216
bcf356c
 
40415b8
cf4cb00
2044733
 
40415b8
 
3a8bfcd
2044733
3a8bfcd
40415b8
 
62d1e32
3a8bfcd
2a7381c
3a8bfcd
 
 
 
 
 
 
 
47f5422
a2b6d64
47f5422
a2b6d64
 
47f5422
a2b6d64
 
 
47f5422
a2b6d64
 
47f5422
 
 
 
 
 
 
 
 
 
 
 
 
a2b6d64
7c13927
40415b8
d7e7825
40415b8
 
 
 
 
 
 
 
 
 
 
 
 
d7e7825
d0e2871
263b331
40415b8
 
98d8559
40415b8
3a8bfcd
2bebf02
 
 
98d8559
 
40415b8
2bebf02
52c90eb
2bebf02
40415b8
297d0ae
40415b8
 
3a8bfcd
 
 
 
 
 
 
1af9e28
d7e7825
d0e2871
 
263b331
40415b8
d7e7825
a2b6d64
40415b8
a2b6d64
d7e7825
40415b8
3a8bfcd
40415b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python3
# -- coding: utf-8 --

import base64
import json
import logging
import os
import time
import uuid
from io import BytesIO

import torch
from fastapi import FastAPI, HTTPException, UploadFile, File
from fastapi.staticfiles import StaticFiles
from PIL import Image
from pydantic import BaseModel
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration

# Create the temporary folder if it doesn't exist.
TEMP_DIR = "/temp"
os.makedirs(TEMP_DIR, exist_ok=True)

app = FastAPI()

# Mount the temporary folder so annotated images can be served at /temp/<filename>
app.mount("/temp", StaticFiles(directory=TEMP_DIR), name="temp")

# Define the request model
class PredictRequest(BaseModel):
    image_base64: list[str]
    prompt: str

# Use the desired checkpoint: Qwen/Qwen2.5-VL-3B-Instruct-AWQ
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct-AWQ"
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28

# Load the processor with the image resolution settings
processor = AutoProcessor.from_pretrained(
    checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
)

# Load the Qwen2.5-VL model.
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    checkpoint,
    torch_dtype="auto",
    device_map="auto",
    # attn_implementation="flash_attention_2",
)

@app.get("/")
def read_root():
    return {"message": "API is live. Use the /predict endpoint."}

def encode_image(image_data: BytesIO, max_size=(800, 800), quality=85):
    """
    Converts an image from file data to a Base64-encoded string with optimized size.
    """
    try:
        with Image.open(image_data) as img:
            img = img.convert("RGB")
            img.thumbnail(max_size, Image.LANCZOS)
            buffer = BytesIO()
            img.save(buffer, format="JPEG", quality=quality)
            return base64.b64encode(buffer.getvalue()).decode("utf-8")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error encoding image: {e}")

@app.post("/encode-image/")
async def upload_and_encode_image(file: UploadFile = File(...)):
    """
    Endpoint to upload an image file and return its Base64-encoded representation.
    """
    try:
        image_data = BytesIO(await file.read())
        encoded_string = encode_image(image_data)
        return {"filename": file.filename, "encoded_image": encoded_string}
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"Invalid file: {e}")

@app.post("/predict")
def predict(data: PredictRequest, annotate: bool = False):
    """
    Generates a description (e.g. bounding boxes with labels) for image(s) using Qwen2.5-VL-3B-Instruct-AWQ.
    If 'annotate' is True (as a query parameter), the first image is annotated with the predicted bounding boxes,
    stored in a temporary folder, and its URL is returned.
    
    Request:
        - image_base64: List of base64-encoded images.
        - prompt: A prompt string.
    
    Response (JSON):
        {
            "response": <text generated by Qwen2.5-VL>,
            "annotated_image_url": "/temp/<filename>"   # only if annotate=True
        }
    """
    logging.warning("Calling /predict endpoint...")

    # Ensure image_base64 is a list.
    image_list = data.image_base64 if isinstance(data.image_base64, list) else [data.image_base64]

    # Create input messages: include all images and then the prompt.
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{image}"}
                for image in image_list
            ] + [{"type": "text", "text": data.prompt}],
        }
    ]

    logging.info("Processing inputs... Number of images: %d", len(image_list))

    # Prepare inputs for the model using the processor's chat interface.
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(model.device)

    logging.warning("Starting generation...")
    start_time = time.time()

    # Generate output using the model.
    generated_ids = model.generate(**inputs, max_new_tokens=2056)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    generation_time = time.time() - start_time
    logging.warning("Generation completed in %.2fs.", generation_time)

    # The generated output text is expected to be JSON (e.g., list of detections).
    result_text = output_text[0] if output_text else "No description generated."
    response_data = {"response": result_text}

    if annotate:
        # Decode the first image for annotation.
        try:
            img_str = image_list[0]
            # If the image string contains a data URI prefix, remove it.
            if img_str.startswith("data:image"):
                img_str = img_str.split(",")[1]
            img_data = base64.b64decode(img_str)
            image = Image.open(BytesIO(img_data))
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error decoding image for annotation: {e}")

        # Determine image dimensions (width, height)
        input_wh = image.size
        resolution_wh = input_wh  # Assuming no resolution change

        # Parse the detection result from the model output.
        try:
            detection_result = json.loads(result_text)
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error parsing detection result: {e}")

        # Use the supervision library to create detections and annotate the image.
        try:
            import supervision as sv
            detections = sv.Detections.from_vlm(
                vlm=sv.VLM.QWEN_2_5_VL,
                result=detection_result,
                input_wh=input_wh,
                resolution_wh=resolution_wh
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error creating detections: {e}")

        try:
            box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
            label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)

            annotated_image = image.copy()
            annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
            annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error annotating image: {e}")

        # Save the annotated image in the temporary folder.
        try:
            filename = f"{uuid.uuid4()}.jpg"
            filepath = os.path.join(TEMP_DIR, filename)
            annotated_image.save(filepath, format="JPEG")
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error saving annotated image: {e}")

        # Add the annotated image URL to the response.
        response_data["annotated_image_url"] = f"/temp/{filename}"

    return response_data