Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,47 +1,47 @@
|
|
|
|
|
|
|
|
1 |
import base64
|
|
|
2 |
import logging
|
|
|
3 |
import time
|
|
|
4 |
from io import BytesIO
|
5 |
|
6 |
import torch
|
7 |
-
from fastapi import
|
|
|
8 |
from PIL import Image
|
9 |
from pydantic import BaseModel
|
10 |
from qwen_vl_utils import process_vision_info
|
11 |
-
from transformers import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
)
|
16 |
|
17 |
app = FastAPI()
|
18 |
|
|
|
|
|
19 |
|
20 |
-
# Define request model
|
21 |
class PredictRequest(BaseModel):
|
22 |
image_base64: list[str]
|
23 |
prompt: str
|
24 |
|
25 |
-
|
26 |
-
# checkpoint = "Qwen/Qwen2-VL-2B-Instruct"
|
27 |
-
# min_pixels = 256 * 28 * 28
|
28 |
-
# max_pixels = 1280 * 28 * 28
|
29 |
-
# processor = AutoProcessor.from_pretrained(
|
30 |
-
# checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
|
31 |
-
# )
|
32 |
-
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
33 |
-
# checkpoint,
|
34 |
-
# torch_dtype=torch.bfloat16,
|
35 |
-
# device_map="auto",
|
36 |
-
# # attn_implementation="flash_attention_2",
|
37 |
-
# )
|
38 |
-
# checkpoint = "Qwen/Qwen2.5-VL-7B-Instruct"
|
39 |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct-AWQ"
|
40 |
min_pixels = 256 * 28 * 28
|
41 |
max_pixels = 1280 * 28 * 28
|
|
|
|
|
42 |
processor = AutoProcessor.from_pretrained(
|
43 |
checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
|
44 |
)
|
|
|
|
|
45 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
46 |
checkpoint,
|
47 |
torch_dtype="auto",
|
@@ -49,12 +49,10 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
49 |
# attn_implementation="flash_attention_2",
|
50 |
)
|
51 |
|
52 |
-
|
53 |
@app.get("/")
|
54 |
def read_root():
|
55 |
return {"message": "API is live. Use the /predict endpoint."}
|
56 |
|
57 |
-
|
58 |
def encode_image(image_data: BytesIO, max_size=(800, 800), quality=85):
|
59 |
"""
|
60 |
Converts an image from file data to a Base64-encoded string with optimized size.
|
@@ -69,7 +67,6 @@ def encode_image(image_data: BytesIO, max_size=(800, 800), quality=85):
|
|
69 |
except Exception as e:
|
70 |
raise HTTPException(status_code=500, detail=f"Error encoding image: {e}")
|
71 |
|
72 |
-
|
73 |
@app.post("/encode-image/")
|
74 |
async def upload_and_encode_image(file: UploadFile = File(...)):
|
75 |
"""
|
@@ -82,46 +79,43 @@ async def upload_and_encode_image(file: UploadFile = File(...)):
|
|
82 |
except Exception as e:
|
83 |
raise HTTPException(status_code=400, detail=f"Invalid file: {e}")
|
84 |
|
85 |
-
|
86 |
@app.post("/predict")
|
87 |
-
def predict(data: PredictRequest):
|
88 |
"""
|
89 |
-
Generates a description for
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
"""
|
97 |
-
|
98 |
logging.warning("Calling /predict endpoint...")
|
99 |
|
100 |
-
# Ensure image_base64 is a list
|
101 |
-
image_list = (
|
102 |
-
data.image_base64
|
103 |
-
if isinstance(data.image_base64, list)
|
104 |
-
else [data.image_base64]
|
105 |
-
)
|
106 |
|
107 |
-
# Create
|
108 |
messages = [
|
109 |
{
|
110 |
"role": "user",
|
111 |
"content": [
|
112 |
{"type": "image", "image": f"data:image;base64,{image}"}
|
113 |
for image in image_list
|
114 |
-
]
|
115 |
-
+ [{"type": "text", "text": data.prompt}],
|
116 |
}
|
117 |
]
|
118 |
|
119 |
-
logging.info("Processing inputs...", len(image_list))
|
120 |
|
121 |
-
# Prepare inputs for the model
|
122 |
-
text = processor.apply_chat_template(
|
123 |
-
messages, tokenize=False, add_generation_prompt=True
|
124 |
-
)
|
125 |
image_inputs, video_inputs = process_vision_info(messages)
|
126 |
inputs = processor(
|
127 |
text=[text],
|
@@ -132,21 +126,76 @@ def predict(data: PredictRequest):
|
|
132 |
).to(model.device)
|
133 |
|
134 |
logging.warning("Starting generation...")
|
135 |
-
|
136 |
start_time = time.time()
|
137 |
|
138 |
-
# Generate the
|
139 |
generated_ids = model.generate(**inputs, max_new_tokens=2056)
|
140 |
generated_ids_trimmed = [
|
141 |
-
out_ids[len(in_ids)
|
142 |
-
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
143 |
]
|
144 |
output_text = processor.batch_decode(
|
145 |
-
generated_ids_trimmed,
|
146 |
-
skip_special_tokens=True,
|
147 |
-
clean_up_tokenization_spaces=False,
|
148 |
)
|
149 |
-
|
150 |
-
logging.warning(
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -- coding: utf-8 --
|
3 |
+
|
4 |
import base64
|
5 |
+
import json
|
6 |
import logging
|
7 |
+
import os
|
8 |
import time
|
9 |
+
import uuid
|
10 |
from io import BytesIO
|
11 |
|
12 |
import torch
|
13 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File
|
14 |
+
from fastapi.staticfiles import StaticFiles
|
15 |
from PIL import Image
|
16 |
from pydantic import BaseModel
|
17 |
from qwen_vl_utils import process_vision_info
|
18 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
19 |
+
|
20 |
+
# Create the temporary folder if it doesn't exist.
|
21 |
+
TEMP_DIR = "temp"
|
22 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
23 |
|
24 |
app = FastAPI()
|
25 |
|
26 |
+
# Mount the temporary folder so annotated images can be served at /temp/<filename>
|
27 |
+
app.mount("/temp", StaticFiles(directory=TEMP_DIR), name="temp")
|
28 |
|
29 |
+
# Define the request model
|
30 |
class PredictRequest(BaseModel):
|
31 |
image_base64: list[str]
|
32 |
prompt: str
|
33 |
|
34 |
+
# Use the desired checkpoint: Qwen/Qwen2.5-VL-3B-Instruct-AWQ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct-AWQ"
|
36 |
min_pixels = 256 * 28 * 28
|
37 |
max_pixels = 1280 * 28 * 28
|
38 |
+
|
39 |
+
# Load the processor with the image resolution settings
|
40 |
processor = AutoProcessor.from_pretrained(
|
41 |
checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
|
42 |
)
|
43 |
+
|
44 |
+
# Load the Qwen2.5-VL model.
|
45 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
46 |
checkpoint,
|
47 |
torch_dtype="auto",
|
|
|
49 |
# attn_implementation="flash_attention_2",
|
50 |
)
|
51 |
|
|
|
52 |
@app.get("/")
|
53 |
def read_root():
|
54 |
return {"message": "API is live. Use the /predict endpoint."}
|
55 |
|
|
|
56 |
def encode_image(image_data: BytesIO, max_size=(800, 800), quality=85):
|
57 |
"""
|
58 |
Converts an image from file data to a Base64-encoded string with optimized size.
|
|
|
67 |
except Exception as e:
|
68 |
raise HTTPException(status_code=500, detail=f"Error encoding image: {e}")
|
69 |
|
|
|
70 |
@app.post("/encode-image/")
|
71 |
async def upload_and_encode_image(file: UploadFile = File(...)):
|
72 |
"""
|
|
|
79 |
except Exception as e:
|
80 |
raise HTTPException(status_code=400, detail=f"Invalid file: {e}")
|
81 |
|
|
|
82 |
@app.post("/predict")
|
83 |
+
def predict(data: PredictRequest, annotate: bool = False):
|
84 |
"""
|
85 |
+
Generates a description (e.g. bounding boxes with labels) for image(s) using Qwen2.5-VL-3B-Instruct-AWQ.
|
86 |
+
If 'annotate' is True (as a query parameter), the first image is annotated with the predicted bounding boxes,
|
87 |
+
stored in a temporary folder, and its URL is returned.
|
88 |
+
|
89 |
+
Request:
|
90 |
+
- image_base64: List of base64-encoded images.
|
91 |
+
- prompt: A prompt string.
|
92 |
+
|
93 |
+
Response (JSON):
|
94 |
+
{
|
95 |
+
"response": <text generated by Qwen2.5-VL>,
|
96 |
+
"annotated_image_url": "/temp/<filename>" # only if annotate=True
|
97 |
+
}
|
98 |
"""
|
|
|
99 |
logging.warning("Calling /predict endpoint...")
|
100 |
|
101 |
+
# Ensure image_base64 is a list.
|
102 |
+
image_list = data.image_base64 if isinstance(data.image_base64, list) else [data.image_base64]
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
# Create input messages: include all images and then the prompt.
|
105 |
messages = [
|
106 |
{
|
107 |
"role": "user",
|
108 |
"content": [
|
109 |
{"type": "image", "image": f"data:image;base64,{image}"}
|
110 |
for image in image_list
|
111 |
+
] + [{"type": "text", "text": data.prompt}],
|
|
|
112 |
}
|
113 |
]
|
114 |
|
115 |
+
logging.info("Processing inputs... Number of images: %d", len(image_list))
|
116 |
|
117 |
+
# Prepare inputs for the model using the processor's chat interface.
|
118 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
119 |
image_inputs, video_inputs = process_vision_info(messages)
|
120 |
inputs = processor(
|
121 |
text=[text],
|
|
|
126 |
).to(model.device)
|
127 |
|
128 |
logging.warning("Starting generation...")
|
|
|
129 |
start_time = time.time()
|
130 |
|
131 |
+
# Generate output using the model.
|
132 |
generated_ids = model.generate(**inputs, max_new_tokens=2056)
|
133 |
generated_ids_trimmed = [
|
134 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
|
135 |
]
|
136 |
output_text = processor.batch_decode(
|
137 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
|
|
|
|
138 |
)
|
139 |
+
generation_time = time.time() - start_time
|
140 |
+
logging.warning("Generation completed in %.2fs.", generation_time)
|
141 |
+
|
142 |
+
# The generated output text is expected to be JSON (e.g., list of detections).
|
143 |
+
result_text = output_text[0] if output_text else "No description generated."
|
144 |
+
response_data = {"response": result_text}
|
145 |
+
|
146 |
+
if annotate:
|
147 |
+
# Decode the first image for annotation.
|
148 |
+
try:
|
149 |
+
img_str = image_list[0]
|
150 |
+
# If the image string contains a data URI prefix, remove it.
|
151 |
+
if img_str.startswith("data:image"):
|
152 |
+
img_str = img_str.split(",")[1]
|
153 |
+
img_data = base64.b64decode(img_str)
|
154 |
+
image = Image.open(BytesIO(img_data))
|
155 |
+
except Exception as e:
|
156 |
+
raise HTTPException(status_code=500, detail=f"Error decoding image for annotation: {e}")
|
157 |
+
|
158 |
+
# Determine image dimensions (width, height)
|
159 |
+
input_wh = image.size
|
160 |
+
resolution_wh = input_wh # Assuming no resolution change
|
161 |
+
|
162 |
+
# Parse the detection result from the model output.
|
163 |
+
try:
|
164 |
+
detection_result = json.loads(result_text)
|
165 |
+
except Exception as e:
|
166 |
+
raise HTTPException(status_code=500, detail=f"Error parsing detection result: {e}")
|
167 |
+
|
168 |
+
# Use the supervision library to create detections and annotate the image.
|
169 |
+
try:
|
170 |
+
import supervision as sv
|
171 |
+
detections = sv.Detections.from_vlm(
|
172 |
+
vlm=sv.VLM.QWEN_2_5_VL,
|
173 |
+
result=detection_result,
|
174 |
+
input_wh=input_wh,
|
175 |
+
resolution_wh=resolution_wh
|
176 |
+
)
|
177 |
+
except Exception as e:
|
178 |
+
raise HTTPException(status_code=500, detail=f"Error creating detections: {e}")
|
179 |
+
|
180 |
+
try:
|
181 |
+
box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
182 |
+
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
183 |
+
|
184 |
+
annotated_image = image.copy()
|
185 |
+
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
|
186 |
+
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
187 |
+
except Exception as e:
|
188 |
+
raise HTTPException(status_code=500, detail=f"Error annotating image: {e}")
|
189 |
+
|
190 |
+
# Save the annotated image in the temporary folder.
|
191 |
+
try:
|
192 |
+
filename = f"{uuid.uuid4()}.jpg"
|
193 |
+
filepath = os.path.join(TEMP_DIR, filename)
|
194 |
+
annotated_image.save(filepath, format="JPEG")
|
195 |
+
except Exception as e:
|
196 |
+
raise HTTPException(status_code=500, detail=f"Error saving annotated image: {e}")
|
197 |
+
|
198 |
+
# Add the annotated image URL to the response.
|
199 |
+
response_data["annotated_image_url"] = f"/temp/{filename}"
|
200 |
+
|
201 |
+
return response_data
|