File size: 7,369 Bytes
e7103ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import altair as alt
import polars as pl

import gradio as gr

DATASETS = ["il-common"]
BENCHMARKS = {
    "Parameters": (None, None, None),
    "CPU Rate with compile": ("cpu", False, True),
    "CPU Rate without compile": ("cpu", False, False),
    "CUDA Rate with compile": ("cuda", False, True),
    "CUDA Rate AMP with compile": ("cuda", True, True),
}


def plot_acc_param(param_compare_results_df: pl.DataFrame, width: int = 1000, height: int = 680) -> alt.LayerChart:
    df = param_compare_results_df.select(
        "Model name", "Model type", "Accuracy", "Top-3 accuracy", "Resolution", "Parameters (M)", "Pareto frontier (p)"
    )
    base = df.plot.point(
        x="Parameters (M)",
        y="Accuracy",
        color="Model type",
        shape="Resolution:N",
        tooltip=["Parameters (M)", "Accuracy", "Top-3 accuracy", "Model name", "Model type", "Resolution"],
    )
    text = base.mark_text(align="center", baseline="middle", dy=-10).encode(text="Model name")
    frontier = df.plot.line(x="Parameters (M)", y="Pareto frontier (p)").mark_line(
        interpolate="step-after", color="red", strokeWidth=0.3, strokeDash=(2, 2)
    )

    chart = base + text + frontier
    return chart.properties(title="Accuray vs Parameter Count", width=width, height=height).configure_scale(zero=False)


def plot_acc_rate(rate_compare_results_df: pl.DataFrame, width: int = 1000, height: int = 680) -> alt.LayerChart:
    device = rate_compare_results_df["device"][0]
    compiled = rate_compare_results_df["compile"][0]
    batch_size = rate_compare_results_df["batch_size"][0]
    amp = rate_compare_results_df["amp"][0]
    df = rate_compare_results_df.select(
        "Model name",
        "Model type",
        "Accuracy",
        "Top-3 accuracy",
        "Resolution",
        "ms / sample",
        "Parameters (M)",
        "Pareto frontier (ms)",
    )
    base = df.plot.point(
        x="ms / sample",
        y="Accuracy",
        color="Model type",
        shape="Resolution:N",
        tooltip=[
            "ms / sample",
            "Parameters (M)",
            "Accuracy",
            "Top-3 accuracy",
            "Model name",
            "Model type",
            "Resolution",
        ],
    )
    text = base.mark_text(align="center", baseline="middle", dy=-10).encode(text="Model name")
    frontier = df.plot.line(x="ms / sample", y="Pareto frontier (ms)").mark_line(
        interpolate="step-after", color="red", strokeWidth=0.3, strokeDash=(2, 2)
    )

    chart = base + text + frontier
    return chart.properties(
        title=f"Accuray vs {device.upper()} Rate (compile={compiled}, batch size={batch_size}, amp={amp})",
        width=width,
        height=height,
    ).configure_scale(zero=False)


def update_data(
    dataset: str, benchmark: str, intermediate: bool, mim: bool, log_x: bool
) -> tuple[alt.LayerChart, pl.DataFrame]:
    compare_results_df = pl.read_csv(f"results_{dataset}.csv")
    if intermediate is False:
        compare_results_df = compare_results_df.filter(pl.col("Intermediate") == intermediate)
    if mim is False:
        compare_results_df = compare_results_df.filter(pl.col("MIM") == mim)

    x_scale_type = "log" if log_x is True else "linear"

    # Parameter count
    if benchmark == "Parameters":
        param_compare_results_df = compare_results_df.unique(subset=["Model name"]).sort(
            "Parameters (M)", descending=False
        )
        param_compare_results_df = param_compare_results_df.with_columns(
            pl.col("Accuracy").cum_max().alias("Pareto frontier (p)")
        )
        param_compare_results_df = param_compare_results_df.drop("Samples / sec", "device", "ms / sample")
        chart = plot_acc_param(param_compare_results_df)

        chart.layer[0].encoding.x.scale = alt.Scale(domain=[0.5, 7.5], type=x_scale_type)
        output_df = param_compare_results_df

    # Rate
    else:
        (device, amp_enabled, compiled) = BENCHMARKS[benchmark]
        df = compare_results_df.filter(device=device, amp=amp_enabled, compile=compiled)
        device_compare_results_df = df.unique(subset=["Model name"]).sort("ms / sample", descending=False)
        device_compare_results_df = device_compare_results_df.with_columns(
            pl.col("Accuracy").cum_max().alias("Pareto frontier (ms)")
        )
        chart = plot_acc_rate(device_compare_results_df)

        x_max = device_compare_results_df["ms / sample"].quantile(0.95) * 1.04
        x_min = device_compare_results_df["ms / sample"].min() * 0.96
        chart.layer[0].encoding.x.scale = alt.Scale(domain=[x_min, x_max], type=x_scale_type)
        output_df = device_compare_results_df

    output_df = output_df.select(
        [
            pl.col(col).round(4) if output_df.schema[col] in [pl.Float32, pl.Float64] else col
            for col in output_df.columns
        ]
    )
    return (chart, output_df.drop("Mistakes", "Samples"))


def app() -> None:
    with gr.Blocks(title="Birder Leaderboard", analytics_enabled=False) as leaderboard:
        gr.HTML("<center><h1>The Birder Leaderboard</h1></center>")
        with gr.Row():
            with gr.Column():
                pass

            with gr.Column():
                gr.Markdown(
                    """
                    Leaderboard of all the pre-trained Birder models across all datasets.

                    * GPU: A5000 ADA Generation
                    * CPU: AMD Ryzen Threadripper PRO 7975WX
                    """
                )

            with gr.Column():
                pass

        with gr.Row():
            with gr.Column():
                pass

            with gr.Column():
                dataset_dropdown = gr.Dropdown(
                    choices=DATASETS,
                    label="Select Dataset",
                    value=DATASETS[0] if DATASETS else None,
                )
                benchmark_dropdown = gr.Dropdown(
                    choices=BENCHMARKS.keys(),
                    label="Select Benchmark",
                    value=next(iter(BENCHMARKS.keys())) if BENCHMARKS else None,
                    filterable=False,
                )

            with gr.Column():
                intermediate = gr.Checkbox(
                    label="Intermediate",
                    value=True,
                    info="Show models that underwent intermediate training (extra data)",
                )
                mim = gr.Checkbox(label="MIM", value=True, info="Show models with Masked Image Modeling pre-training")
                log_x = gr.Checkbox(label="Log scale X-axis", value=False)

            with gr.Column():
                pass

        plot = gr.Plot(container=False)
        table = gr.Dataframe(show_search=True)

        inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, log_x]
        outputs = [plot, table]
        leaderboard.load(update_data, inputs=inputs, outputs=outputs)

        dataset_dropdown.change(update_data, inputs=inputs, outputs=outputs)
        benchmark_dropdown.change(update_data, inputs=inputs, outputs=outputs)
        intermediate.change(update_data, inputs=inputs, outputs=outputs)
        mim.change(update_data, inputs=inputs, outputs=outputs)
        log_x.change(update_data, inputs=inputs, outputs=outputs)

    leaderboard.launch()


# Launch the app
if __name__ == "__main__":
    app()