hassonofer commited on
Commit
e7103ef
·
verified ·
1 Parent(s): 6b8e7bd

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +195 -0
  2. requirements.txt +2 -0
  3. results_il-common.csv +270 -0
app.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import altair as alt
2
+ import polars as pl
3
+
4
+ import gradio as gr
5
+
6
+ DATASETS = ["il-common"]
7
+ BENCHMARKS = {
8
+ "Parameters": (None, None, None),
9
+ "CPU Rate with compile": ("cpu", False, True),
10
+ "CPU Rate without compile": ("cpu", False, False),
11
+ "CUDA Rate with compile": ("cuda", False, True),
12
+ "CUDA Rate AMP with compile": ("cuda", True, True),
13
+ }
14
+
15
+
16
+ def plot_acc_param(param_compare_results_df: pl.DataFrame, width: int = 1000, height: int = 680) -> alt.LayerChart:
17
+ df = param_compare_results_df.select(
18
+ "Model name", "Model type", "Accuracy", "Top-3 accuracy", "Resolution", "Parameters (M)", "Pareto frontier (p)"
19
+ )
20
+ base = df.plot.point(
21
+ x="Parameters (M)",
22
+ y="Accuracy",
23
+ color="Model type",
24
+ shape="Resolution:N",
25
+ tooltip=["Parameters (M)", "Accuracy", "Top-3 accuracy", "Model name", "Model type", "Resolution"],
26
+ )
27
+ text = base.mark_text(align="center", baseline="middle", dy=-10).encode(text="Model name")
28
+ frontier = df.plot.line(x="Parameters (M)", y="Pareto frontier (p)").mark_line(
29
+ interpolate="step-after", color="red", strokeWidth=0.3, strokeDash=(2, 2)
30
+ )
31
+
32
+ chart = base + text + frontier
33
+ return chart.properties(title="Accuray vs Parameter Count", width=width, height=height).configure_scale(zero=False)
34
+
35
+
36
+ def plot_acc_rate(rate_compare_results_df: pl.DataFrame, width: int = 1000, height: int = 680) -> alt.LayerChart:
37
+ device = rate_compare_results_df["device"][0]
38
+ compiled = rate_compare_results_df["compile"][0]
39
+ batch_size = rate_compare_results_df["batch_size"][0]
40
+ amp = rate_compare_results_df["amp"][0]
41
+ df = rate_compare_results_df.select(
42
+ "Model name",
43
+ "Model type",
44
+ "Accuracy",
45
+ "Top-3 accuracy",
46
+ "Resolution",
47
+ "ms / sample",
48
+ "Parameters (M)",
49
+ "Pareto frontier (ms)",
50
+ )
51
+ base = df.plot.point(
52
+ x="ms / sample",
53
+ y="Accuracy",
54
+ color="Model type",
55
+ shape="Resolution:N",
56
+ tooltip=[
57
+ "ms / sample",
58
+ "Parameters (M)",
59
+ "Accuracy",
60
+ "Top-3 accuracy",
61
+ "Model name",
62
+ "Model type",
63
+ "Resolution",
64
+ ],
65
+ )
66
+ text = base.mark_text(align="center", baseline="middle", dy=-10).encode(text="Model name")
67
+ frontier = df.plot.line(x="ms / sample", y="Pareto frontier (ms)").mark_line(
68
+ interpolate="step-after", color="red", strokeWidth=0.3, strokeDash=(2, 2)
69
+ )
70
+
71
+ chart = base + text + frontier
72
+ return chart.properties(
73
+ title=f"Accuray vs {device.upper()} Rate (compile={compiled}, batch size={batch_size}, amp={amp})",
74
+ width=width,
75
+ height=height,
76
+ ).configure_scale(zero=False)
77
+
78
+
79
+ def update_data(
80
+ dataset: str, benchmark: str, intermediate: bool, mim: bool, log_x: bool
81
+ ) -> tuple[alt.LayerChart, pl.DataFrame]:
82
+ compare_results_df = pl.read_csv(f"results_{dataset}.csv")
83
+ if intermediate is False:
84
+ compare_results_df = compare_results_df.filter(pl.col("Intermediate") == intermediate)
85
+ if mim is False:
86
+ compare_results_df = compare_results_df.filter(pl.col("MIM") == mim)
87
+
88
+ x_scale_type = "log" if log_x is True else "linear"
89
+
90
+ # Parameter count
91
+ if benchmark == "Parameters":
92
+ param_compare_results_df = compare_results_df.unique(subset=["Model name"]).sort(
93
+ "Parameters (M)", descending=False
94
+ )
95
+ param_compare_results_df = param_compare_results_df.with_columns(
96
+ pl.col("Accuracy").cum_max().alias("Pareto frontier (p)")
97
+ )
98
+ param_compare_results_df = param_compare_results_df.drop("Samples / sec", "device", "ms / sample")
99
+ chart = plot_acc_param(param_compare_results_df)
100
+
101
+ chart.layer[0].encoding.x.scale = alt.Scale(domain=[0.5, 7.5], type=x_scale_type)
102
+ output_df = param_compare_results_df
103
+
104
+ # Rate
105
+ else:
106
+ (device, amp_enabled, compiled) = BENCHMARKS[benchmark]
107
+ df = compare_results_df.filter(device=device, amp=amp_enabled, compile=compiled)
108
+ device_compare_results_df = df.unique(subset=["Model name"]).sort("ms / sample", descending=False)
109
+ device_compare_results_df = device_compare_results_df.with_columns(
110
+ pl.col("Accuracy").cum_max().alias("Pareto frontier (ms)")
111
+ )
112
+ chart = plot_acc_rate(device_compare_results_df)
113
+
114
+ x_max = device_compare_results_df["ms / sample"].quantile(0.95) * 1.04
115
+ x_min = device_compare_results_df["ms / sample"].min() * 0.96
116
+ chart.layer[0].encoding.x.scale = alt.Scale(domain=[x_min, x_max], type=x_scale_type)
117
+ output_df = device_compare_results_df
118
+
119
+ output_df = output_df.select(
120
+ [
121
+ pl.col(col).round(4) if output_df.schema[col] in [pl.Float32, pl.Float64] else col
122
+ for col in output_df.columns
123
+ ]
124
+ )
125
+ return (chart, output_df.drop("Mistakes", "Samples"))
126
+
127
+
128
+ def app() -> None:
129
+ with gr.Blocks(title="Birder Leaderboard", analytics_enabled=False) as leaderboard:
130
+ gr.HTML("<center><h1>The Birder Leaderboard</h1></center>")
131
+ with gr.Row():
132
+ with gr.Column():
133
+ pass
134
+
135
+ with gr.Column():
136
+ gr.Markdown(
137
+ """
138
+ Leaderboard of all the pre-trained Birder models across all datasets.
139
+
140
+ * GPU: A5000 ADA Generation
141
+ * CPU: AMD Ryzen Threadripper PRO 7975WX
142
+ """
143
+ )
144
+
145
+ with gr.Column():
146
+ pass
147
+
148
+ with gr.Row():
149
+ with gr.Column():
150
+ pass
151
+
152
+ with gr.Column():
153
+ dataset_dropdown = gr.Dropdown(
154
+ choices=DATASETS,
155
+ label="Select Dataset",
156
+ value=DATASETS[0] if DATASETS else None,
157
+ )
158
+ benchmark_dropdown = gr.Dropdown(
159
+ choices=BENCHMARKS.keys(),
160
+ label="Select Benchmark",
161
+ value=next(iter(BENCHMARKS.keys())) if BENCHMARKS else None,
162
+ filterable=False,
163
+ )
164
+
165
+ with gr.Column():
166
+ intermediate = gr.Checkbox(
167
+ label="Intermediate",
168
+ value=True,
169
+ info="Show models that underwent intermediate training (extra data)",
170
+ )
171
+ mim = gr.Checkbox(label="MIM", value=True, info="Show models with Masked Image Modeling pre-training")
172
+ log_x = gr.Checkbox(label="Log scale X-axis", value=False)
173
+
174
+ with gr.Column():
175
+ pass
176
+
177
+ plot = gr.Plot(container=False)
178
+ table = gr.Dataframe(show_search=True)
179
+
180
+ inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, log_x]
181
+ outputs = [plot, table]
182
+ leaderboard.load(update_data, inputs=inputs, outputs=outputs)
183
+
184
+ dataset_dropdown.change(update_data, inputs=inputs, outputs=outputs)
185
+ benchmark_dropdown.change(update_data, inputs=inputs, outputs=outputs)
186
+ intermediate.change(update_data, inputs=inputs, outputs=outputs)
187
+ mim.change(update_data, inputs=inputs, outputs=outputs)
188
+ log_x.change(update_data, inputs=inputs, outputs=outputs)
189
+
190
+ leaderboard.launch()
191
+
192
+
193
+ # Launch the app
194
+ if __name__ == "__main__":
195
+ app()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ altair
2
+ polars
results_il-common.csv ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model name,Model type,Accuracy,Top-3 accuracy,Macro F1-score,Samples,Mistakes,Resolution,Intermediate,MIM,ms / sample,Parameters (M),Samples / sec,device,batch_size,compile,amp
2
+ cait xxs24,CaiT,0.9233055134041477,0.9696509863429439,0.8966270708482155,15816,1213,256,false,false,64.39068573596866,11.834867,15.5301964650673,cpu,1,false,false
3
+ cait xxs24,CaiT,0.9233055134041477,0.9696509863429439,0.8966270708482155,15816,1213,256,false,false,41.68288707250035,11.834867,23.9906606819405,cpu,1,true,false
4
+ cait xxs24,CaiT,0.9233055134041477,0.9696509863429439,0.8966270708482155,15816,1213,256,false,false,1.2317885403956548,11.834867,811.827653209695,cuda,512,true,false
5
+ cait xxs24,CaiT,0.9233055134041477,0.9696509863429439,0.8966270708482155,15816,1213,256,false,false,0.5881764810396813,11.834867,1700.16998679098,cuda,512,true,true
6
+ coat lite tiny,CoaT,0.9281107738998483,0.9728755690440061,0.9046200933029305,15816,1137,256,false,false,24.501763631007623,5.520051,40.8133885813213,cpu,1,false,false
7
+ coat lite tiny,CoaT,0.9281107738998483,0.9728755690440061,0.9046200933029305,15816,1137,256,false,false,19.592608900507916,5.520051,51.0396550596218,cpu,1,true,false
8
+ coat lite tiny,CoaT,0.9281107738998483,0.9728755690440061,0.9046200933029305,15816,1137,256,false,false,0.5551642951610358,5.520051,1801.2685770974,cuda,512,true,false
9
+ coat lite tiny,CoaT,0.9281107738998483,0.9728755690440061,0.9046200933029305,15816,1137,256,false,false,0.2960239313324566,5.520051,3378.10526162132,cuda,512,true,true
10
+ coat tiny,CoaT,0.9324102175012645,0.9744562468386444,0.9080923389521037,15816,1069,256,false,false,73.81677493103761,5.402303,13.5470562204084,cpu,1,false,false
11
+ coat tiny,CoaT,0.9324102175012645,0.9744562468386444,0.9080923389521037,15816,1069,256,false,false,58.37142245296853,5.402303,17.13167090978,cpu,1,true,false
12
+ coat tiny,CoaT,0.9324102175012645,0.9744562468386444,0.9080923389521037,15816,1069,256,false,false,1.4600921841895333,5.402303,684.888263103113,cuda,512,true,false
13
+ coat tiny,CoaT,0.9324102175012645,0.9744562468386444,0.9080923389521037,15816,1069,256,false,false,0.8644292095408465,5.402303,1156.83272726423,cuda,512,true,true
14
+ convnext v2 atto,ConvNeXt v2,0.8779084471421346,0.9412620131512393,0.8448640662634189,15816,1931,256,false,false,10.824043098022232,3.506491,92.386919651375,cpu,1,false,false
15
+ convnext v2 atto,ConvNeXt v2,0.8779084471421346,0.9412620131512393,0.8448640662634189,15816,1931,256,false,false,10.806253695511252,3.506491,92.5390082610576,cpu,1,true,false
16
+ convnext v2 atto,ConvNeXt v2,0.8779084471421346,0.9412620131512393,0.8448640662634189,15816,1931,256,false,false,0.20181845110357696,3.506491,4954.94834358223,cuda,512,true,false
17
+ convnext v2 atto,ConvNeXt v2,0.8779084471421346,0.9412620131512393,0.8448640662634189,15816,1931,256,false,false,0.09773218541511133,3.506491,10232.0437812023,cuda,512,true,true
18
+ crossvit 9d,CrossViT,0.8344081942336874,0.9245700556398584,0.7976736169525116,15816,2619,240,false,false,16.054137544997502,8.541222,62.2892383472572,cpu,1,false,false
19
+ crossvit 9d,CrossViT,0.8344081942336874,0.9245700556398584,0.7976736169525116,15816,2619,240,false,false,19.764657090476252,8.541222,50.5953629968039,cpu,1,true,false
20
+ crossvit 9d,CrossViT,0.8344081942336874,0.9245700556398584,0.7976736169525116,15816,2619,240,false,false,0.2649056839504734,8.541222,3774.92843900986,cuda,512,true,false
21
+ crossvit 9d,CrossViT,0.8344081942336874,0.9245700556398584,0.7976736169525116,15816,2619,240,false,false,0.1489146511863736,8.541222,6715.25596731549,cuda,512,true,true
22
+ deit3 t16,DeiT3,0.9168563480020233,0.9677541729893778,0.890935439041065,15816,1315,256,false,false,13.375097163487226,5.600435,74.7658119994752,cpu,1,false,false
23
+ deit3 t16,DeiT3,0.9168563480020233,0.9677541729893778,0.890935439041065,15816,1315,256,false,false,15.331185140006708,5.600435,65.22652951274466,cpu,1,true,false
24
+ deit3 t16,DeiT3,0.9168563480020233,0.9677541729893778,0.890935439041065,15816,1315,256,false,false,0.2508516241698544,5.600435,3986.4202725786977,cuda,512,true,false
25
+ deit3 t16,DeiT3,0.9168563480020233,0.9677541729893778,0.890935439041065,15816,1315,256,false,false,0.11195500262260794,5.600435,8932.160033713959,cuda,512,true,true
26
+ deit t16,DeiT,0.8510369246332827,0.9297546788062722,0.8156339877862497,15816,2356,256,false,false,12.664732132456269,5.668006,78.9594276089955,cpu,1,false,false
27
+ deit t16,DeiT,0.8510369246332827,0.9297546788062722,0.8156339877862497,15816,2356,256,false,false,15.506538269459263,5.668006,64.4889260660801,cpu,1,true,false
28
+ deit t16,DeiT,0.8510369246332827,0.9297546788062722,0.8156339877862497,15816,2356,256,false,false,0.24996028456030206,5.668006,4000.63554799944,cuda,512,true,false
29
+ deit t16,DeiT,0.8510369246332827,0.9297546788062722,0.8156339877862497,15816,2356,256,false,false,0.10917858348648225,5.668006,9159.30549807704,cuda,512,true,true
30
+ edgenext s,EdgeNeXt,0.9408194233687405,0.980209914011128,0.9195325359023405,15816,936,256,false,false,14.842738748004201,5.394987,67.3730109367089,cpu,1,false,false
31
+ edgenext s,EdgeNeXt,0.9408194233687405,0.980209914011128,0.9195325359023405,15816,936,256,false,false,14.669244047021483,5.394987,68.1698386634344,cpu,1,true,false
32
+ edgenext s,EdgeNeXt,0.9408194233687405,0.980209914011128,0.9195325359023405,15816,936,256,false,false,0.3130836500389473,5.394987,3194.03456512533,cuda,512,true,false
33
+ edgenext s,EdgeNeXt,0.9408194233687405,0.980209914011128,0.9195325359023405,15816,936,256,false,false,0.17158014565893623,5.394987,5828.18015545797,cuda,512,true,true
34
+ edgenext xs,EdgeNeXt,0.9159711684370258,0.9685128983308042,0.889645046635161,15816,1329,256,false,false,12.587696057045829,2.215407,79.4426553888915,cpu,1,false,false
35
+ edgenext xs,EdgeNeXt,0.9159711684370258,0.9685128983308042,0.889645046635161,15816,1329,256,false,false,12.583545700530525,2.215407,79.468857490448,cpu,1,true,false
36
+ edgenext xs,EdgeNeXt,0.9159711684370258,0.9685128983308042,0.889645046635161,15816,1329,256,false,false,0.20422717654298592,2.215407,4896.50798158843,cuda,512,true,false
37
+ edgenext xs,EdgeNeXt,0.9159711684370258,0.9685128983308042,0.889645046635161,15816,1329,256,false,false,0.11380929258280041,2.215407,8786.62873044803,cuda,512,true,true
38
+ edgenext xxs,EdgeNeXt,0.8951062215477997,0.9594081942336874,0.8661576455863582,15816,1659,256,false,false,9.204896731011145,1.220915,108.637829323062,cpu,1,false,false
39
+ edgenext xxs,EdgeNeXt,0.8951062215477997,0.9594081942336874,0.8661576455863582,15816,1659,256,false,false,12.805908158537937,1.220915,78.0889560990082,cpu,1,true,false
40
+ edgenext xxs,EdgeNeXt,0.8951062215477997,0.9594081942336874,0.8661576455863582,15816,1659,256,false,false,0.1149764700585365,1.220915,8697.43173964971,cuda,512,true,false
41
+ edgenext xxs,EdgeNeXt,0.8951062215477997,0.9594081942336874,0.8661576455863582,15816,1659,256,false,false,0.06506661872549555,1.220915,15368.8637828073,cuda,512,true,true
42
+ edgevit xs,EdgeViT,0.9338012139605463,0.9783131006575619,0.9107477923374089,15816,1047,256,false,false,18.29957311996258,6.52752,54.6460834602269,cpu,1,false,false
43
+ edgevit xs,EdgeViT,0.9338012139605463,0.9783131006575619,0.9107477923374089,15816,1047,256,false,false,18.570385712489948,6.52752,53.8491776898003,cpu,1,true,false
44
+ edgevit xs,EdgeViT,0.9338012139605463,0.9783131006575619,0.9107477923374089,15816,1047,256,false,false,0.3351423560644661,6.52752,2983.80667768429,cuda,512,true,false
45
+ edgevit xs,EdgeViT,0.9338012139605463,0.9783131006575619,0.9107477923374089,15816,1047,256,false,false,0.19012849867692674,6.52752,5259.60078030825,cuda,512,true,true
46
+ edgevit xxs,EdgeViT,0.9233687405159332,0.9733813859382904,0.8994409956368182,15816,1212,256,false,false,16.727803323476117,3.885552,59.7807124260351,cpu,1,false,false
47
+ edgevit xxs,EdgeViT,0.9233687405159332,0.9733813859382904,0.8994409956368182,15816,1212,256,false,false,16.873117684968754,3.885552,59.265870046698,cpu,1,true,false
48
+ edgevit xxs,EdgeViT,0.9233687405159332,0.9733813859382904,0.8994409956368182,15816,1212,256,false,false,0.24464475691388515,3.885552,4087.55949898407,cuda,512,true,false
49
+ edgevit xxs,EdgeViT,0.9233687405159332,0.9733813859382904,0.8994409956368182,15816,1212,256,false,false,0.14845277733400064,3.885552,6736.14881417895,cuda,512,true,true
50
+ efficientformer v1 l1,EfficientFormer v1,0.9269726858877086,0.9723697521497218,0.903289204716347,15816,1155,256,false,false,15.219937715970442,11.725014,65.7032912132544,cpu,1,false,false
51
+ efficientformer v1 l1,EfficientFormer v1,0.9269726858877086,0.9723697521497218,0.903289204716347,15816,1155,256,false,false,15.241889148484924,11.725014,65.6086650583863,cpu,1,true,false
52
+ efficientformer v1 l1,EfficientFormer v1,0.9269726858877086,0.9723697521497218,0.903289204716347,15816,1155,256,false,false,0.2707337024656906,11.725014,3693.66647333731,cuda,512,true,false
53
+ efficientformer v1 l1,EfficientFormer v1,0.9269726858877086,0.9723697521497218,0.903289204716347,15816,1155,256,false,false,0.1575567991750404,11.725014,6346.91746237516,cuda,512,true,true
54
+ efficientformer v2 s0,EfficientFormer v2,0.9112923621648963,0.9644031360647446,0.8858904450163702,15816,1403,256,false,false,16.47026246995665,3.35311,60.7154865822021,cpu,1,false,false
55
+ efficientformer v2 s0,EfficientFormer v2,0.9112923621648963,0.9644031360647446,0.8858904450163702,15816,1403,256,false,false,16.415334326040476,3.35311,60.9186496076202,cpu,1,true,false
56
+ efficientformer v2 s0,EfficientFormer v2,0.9112923621648963,0.9644031360647446,0.8858904450163702,15816,1403,256,false,false,0.24185917242164126,3.35311,4134.6374834057,cuda,512,true,false
57
+ efficientformer v2 s0,EfficientFormer v2,0.9112923621648963,0.9644031360647446,0.8858904450163702,15816,1403,256,false,false,0.12283595137716931,3.35311,8140.93910446045,cuda,512,true,true
58
+ efficientformer v2 s1,EfficientFormer v2,0.9246332827516439,0.9702200303490136,0.9010992245890288,15816,1192,256,false,false,21.316609374014643,5.867278,46.9117758107919,cpu,1,false,false
59
+ efficientformer v2 s1,EfficientFormer v2,0.9246332827516439,0.9702200303490136,0.9010992245890288,15816,1192,256,false,false,21.553742963529675,5.867278,46.3956539563483,cpu,1,true,false
60
+ efficientformer v2 s1,EfficientFormer v2,0.9246332827516439,0.9702200303490136,0.9010992245890288,15816,1192,256,false,false,0.3391028706738551,5.867278,2948.95763640346,cuda,512,true,false
61
+ efficientformer v2 s1,EfficientFormer v2,0.9246332827516439,0.9702200303490136,0.9010992245890288,15816,1192,256,false,false,0.17568842681612298,5.867278,5691.89455516389,cuda,512,true,true
62
+ efficientnet lite0,EfficientNet Lite,0.9243171471927162,0.9742665655032878,0.8998273303058972,15816,1197,256,false,false,11.228561052528676,3.846259,89.0586064698646,cpu,1,false,false
63
+ efficientnet lite0,EfficientNet Lite,0.9243171471927162,0.9742665655032878,0.8998273303058972,15816,1197,256,false,false,11.052089711534787,3.846259,90.4806263883585,cpu,1,true,false
64
+ efficientnet lite0,EfficientNet Lite,0.9243171471927162,0.9742665655032878,0.8998273303058972,15816,1197,256,false,false,0.27446288648434336,3.846259,3643.47986283036,cuda,512,true,false
65
+ efficientnet lite0,EfficientNet Lite,0.9243171471927162,0.9742665655032878,0.8998273303058972,15816,1197,256,false,false,0.13919193396475296,3.846259,7184.32434636066,cuda,512,true,true
66
+ efficientnet v1 b0,EfficientNet v1,0.9346231664137582,0.9779337379868488,0.9119998450017321,15816,1034,256,false,false,13.928454790497193,4.482799,71.7954730112818,cpu,1,false,false
67
+ efficientnet v1 b0,EfficientNet v1,0.9346231664137582,0.9779337379868488,0.9119998450017321,15816,1034,256,false,false,13.917524471995412,4.482799,71.8518585695453,cpu,1,true,false
68
+ efficientnet v1 b0,EfficientNet v1,0.9346231664137582,0.9779337379868488,0.9119998450017321,15816,1034,256,false,false,0.34233410063961833,4.482799,2921.12295599999,cuda,512,true,false
69
+ efficientnet v1 b0,EfficientNet v1,0.9346231664137582,0.9779337379868488,0.9119998450017321,15816,1034,256,false,false,0.20812022827158214,4.482799,4804.9149681648,cuda,512,true,true
70
+ efficientnet v1 b1,EfficientNet v1,0.9397445624683864,0.9805260495700556,0.9187110336722603,15816,953,256,false,false,19.467008312465623,6.988435,51.3689614731224,cpu,1,false,false
71
+ efficientnet v1 b1,EfficientNet v1,0.9397445624683864,0.9805260495700556,0.9187110336722603,15816,953,256,false,false,19.676384848484293,6.988435,50.8223440281527,cpu,1,true,false
72
+ efficientnet v1 b1,EfficientNet v1,0.9397445624683864,0.9805260495700556,0.9187110336722603,15816,953,256,false,false,0.48641762455076765,6.988435,2055.84655967915,cuda,512,true,false
73
+ efficientnet v1 b1,EfficientNet v1,0.9397445624683864,0.9805260495700556,0.9187110336722603,15816,953,256,false,false,0.29787451666493286,6.988435,3357.11833021574,cuda,512,true,true
74
+ efficientnet v2 s,EfficientNet v2,0.9589023773394031,0.9884926656550329,0.9425628174764585,15816,650,256,false,false,30.329582540027367,20.652739,32.9711099280794,cpu,1,false,false
75
+ efficientnet v2 s,EfficientNet v2,0.9589023773394031,0.9884926656550329,0.9425628174764585,15816,650,256,false,false,32.1039896675502,20.652739,31.148776533864,cpu,1,true,false
76
+ efficientnet v2 s,EfficientNet v2,0.9589023773394031,0.9884926656550329,0.9425628174764585,15816,650,256,false,false,0.6526302203076271,20.652739,1532.26125435723,cuda,512,true,false
77
+ efficientnet v2 s,EfficientNet v2,0.9589023773394031,0.9884926656550329,0.9425628174764585,15816,650,256,false,false,0.3633615045310988,20.652739,2752.08019432453,cuda,512,true,true
78
+ efficientvit mit b0,EfficientViT MIT,0.8709534648457259,0.9469524532119373,0.8387527761956511,15816,2041,256,false,false,10.454656123009041,2.604259,95.6511613805411,cpu,1,false,false
79
+ efficientvit mit b0,EfficientViT MIT,0.8709534648457259,0.9469524532119373,0.8387527761956511,15816,2041,256,false,false,10.41588405799121,2.604259,96.0072130634736,cpu,1,true,false
80
+ efficientvit mit b0,EfficientViT MIT,0.8709534648457259,0.9469524532119373,0.8387527761956511,15816,2041,256,false,false,0.12143156471665863,2.604259,8235.09111764591,cuda,512,true,false
81
+ efficientvit mit b0,EfficientViT MIT,0.8709534648457259,0.9469524532119373,0.8387527761956511,15816,2041,256,false,false,0.06862219001447993,2.604259,14572.5456997072,cuda,512,true,true
82
+ efficientvit msft m0,EfficientViT MSFT,0.8171471927162367,0.9105336368234699,0.7773622136949128,15816,2892,256,false,false,13.567838866030801,2.228039,73.7037054960651,cpu,1,false,false
83
+ efficientvit msft m0,EfficientViT MSFT,0.8171471927162367,0.9105336368234699,0.7773622136949128,15816,2892,256,false,false,13.866264995536762,2.228039,72.1174736183015,cpu,1,true,false
84
+ efficientvit msft m0,EfficientViT MSFT,0.8171471927162367,0.9105336368234699,0.7773622136949128,15816,2892,256,false,false,0.032108162607187254,2.228039,31144.7282809062,cuda,512,true,false
85
+ efficientvit msft m0,EfficientViT MSFT,0.8171471927162367,0.9105336368234699,0.7773622136949128,15816,2892,256,false,false,0.01557405745586493,2.228039,64209.3431871485,cuda,512,true,true
86
+ fasternet t0,FasterNet,0.889099645928174,0.9497344461305007,0.8607056146582843,15816,1754,256,false,false,9.0223652479472,3.099751,110.83568138937,cpu,1,false,false
87
+ fasternet t0,FasterNet,0.889099645928174,0.9497344461305007,0.8607056146582843,15816,1754,256,false,false,8.928585624496902,3.099751,111.999821926594,cpu,1,true,false
88
+ fasternet t0,FasterNet,0.889099645928174,0.9497344461305007,0.8607056146582843,15816,1754,256,false,false,0.1081829622899022,3.099751,9243.59972063124,cuda,512,true,false
89
+ fasternet t0,FasterNet,0.889099645928174,0.9497344461305007,0.8607056146582843,15816,1754,256,false,false,0.051216426928704144,3.099751,19524.9856338485,cuda,512,true,true
90
+ fasternet t1,FasterNet,0.9173621648963075,0.9681967627718766,0.8956497648537477,15816,1307,256,false,false,10.819954252510795,6.789619,92.42183253852,cpu,1,false,false
91
+ fasternet t1,FasterNet,0.9173621648963075,0.9681967627718766,0.8956497648537477,15816,1307,256,false,false,10.760123900487082,6.789619,92.9357328268992,cpu,1,true,false
92
+ fasternet t1,FasterNet,0.9173621648963075,0.9681967627718766,0.8956497648537477,15816,1307,256,false,false,0.16611966520997615,6.789619,6019.75689474208,cuda,512,true,false
93
+ fasternet t1,FasterNet,0.9173621648963075,0.9681967627718766,0.8956497648537477,15816,1307,256,false,false,0.08036547239726122,6.789619,12443.1546305958,cuda,512,true,true
94
+ fastvit sa12 (r),FastViT,0.9338644410723318,0.9755943348507841,0.9096416525026684,15816,1046,256,false,false,24.059743323479765,10.900595,41.5632031711704,cpu,1,false,false
95
+ fastvit sa12 (r),FastViT,0.9338644410723318,0.9755943348507841,0.9096416525026684,15816,1046,256,false,false,23.454152235528476,10.900595,42.63637372001,cpu,1,true,false
96
+ fastvit sa12 (r),FastViT,0.9338644410723318,0.9755943348507841,0.9096416525026684,15816,1046,256,false,false,0.6133408118262204,10.900595,1630.41490264198,cuda,512,true,false
97
+ fastvit sa12 (r),FastViT,0.9338644410723318,0.9755943348507841,0.9096416525026684,15816,1046,256,false,false,0.47064620277865216,10.900595,2124.73827281744,cuda,512,true,true
98
+ fastvit t12 (r),FastViT,0.9257081436519979,0.97097875569044,0.8997745595366992,15816,1175,256,false,false,25.432817540015083,6.864115,39.3192770886134,cpu,1,false,false
99
+ fastvit t12 (r),FastViT,0.9257081436519979,0.97097875569044,0.8997745595366992,15816,1175,256,false,false,22.00178689300083,6.864115,45.4508538267007,cpu,1,true,false
100
+ fastvit t12 (r),FastViT,0.9257081436519979,0.97097875569044,0.8997745595366992,15816,1175,256,false,false,0.5689696446432894,6.864115,1757.56300782433,cuda,512,true,false
101
+ fastvit t12 (r),FastViT,0.9257081436519979,0.97097875569044,0.8997745595366992,15816,1175,256,false,false,0.44730803048310025,6.864115,2235.59590226892,cuda,512,true,true
102
+ fastvit t8 (r),FastViT,0.908763277693475,0.9633282751643905,0.883082923822531,15816,1443,256,false,false,18.121529859025035,3.512339,55.1829789084817,cpu,1,false,false
103
+ fastvit t8 (r),FastViT,0.908763277693475,0.9633282751643905,0.883082923822531,15816,1443,256,false,false,17.48599901399576,3.512339,57.188611254044,cpu,1,true,false
104
+ fastvit t8 (r),FastViT,0.908763277693475,0.9633282751643905,0.883082923822531,15816,1443,256,false,false,0.4509239803030597,3.512339,2217.66870621499,cuda,512,true,false
105
+ fastvit t8 (r),FastViT,0.908763277693475,0.9633282751643905,0.883082923822531,15816,1443,256,false,false,0.5414200546391614,3.512339,1846.99475283838,cuda,512,true,true
106
+ ghostnet v2 1,GhostNet v2,0.8964339908952959,0.9599772382397572,0.868180519618657,15816,1638,256,false,false,24.889341119502213,5.351159,40.1778413979968,cpu,1,false,false
107
+ ghostnet v2 1,GhostNet v2,0.8964339908952959,0.9599772382397572,0.868180519618657,15816,1638,256,false,false,24.656092155491912,5.351159,40.5579275780432,cpu,1,true,false
108
+ ghostnet v2 1,GhostNet v2,0.8964339908952959,0.9599772382397572,0.868180519618657,15816,1638,256,false,false,0.29764408067421755,5.351159,3359.71741058925,cuda,512,true,false
109
+ ghostnet v2 1,GhostNet v2,0.8964339908952959,0.9599772382397572,0.868180519618657,15816,1638,256,false,false,0.1990089560058549,5.351159,5024.89948226541,cuda,512,true,true
110
+ inception next a,Inception NeXt,0.9331057157309054,0.9740768841679313,0.912216085257309,15816,1058,256,false,false,15.803010336500021,3.552051,63.2790828270429,cpu,1,false,false
111
+ inception next a,Inception NeXt,0.9331057157309054,0.9740768841679313,0.912216085257309,15816,1058,256,false,false,10.598418775499965,3.552051,94.35369758285725,cpu,1,true,false
112
+ inception next a,Inception NeXt,0.9331057157309054,0.9740768841679313,0.912216085257309,15816,1058,256,false,false,0.21333610259765545,3.552051,4687.439152696839,cuda,512,true,false
113
+ inception next a,Inception NeXt,0.9331057157309054,0.9740768841679313,0.912216085257309,15816,1058,256,false,false,0.11052534954101523,3.552051,9047.698144839675,cuda,512,true,true
114
+ levit 128s,LeViT,0.8447774405665149,0.9250126454223571,0.8110038901183788,15816,2455,256,false,false,8.802155993529562,7.29196,113.608529630138,cpu,1,false,false
115
+ levit 128s,LeViT,0.8447774405665149,0.9250126454223571,0.8110038901183788,15816,2455,256,false,false,8.813130409980651,7.29196,113.467060338461,cpu,1,true,false
116
+ levit 128s,LeViT,0.8447774405665149,0.9250126454223571,0.8110038901183788,15816,2455,256,false,false,0.07773345412601877,7.29196,12864.4740059902,cuda,512,true,false
117
+ levit 128s,LeViT,0.8447774405665149,0.9250126454223571,0.8110038901183788,15816,2455,256,false,false,0.043673856264945334,7.29196,22896.993430888,cuda,512,true,true
118
+ mnasnet 0.5,MNASNet,0.8808801213960546,0.9519473950429944,0.8489857158520994,15816,1884,256,false,false,8.968706375511845,1.412763,111.498800175954,cpu,1,false,false
119
+ mnasnet 0.5,MNASNet,0.8808801213960546,0.9519473950429944,0.8489857158520994,15816,1884,256,false,false,8.821156067017014,1.412763,113.363825829936,cpu,1,true,false
120
+ mnasnet 0.5,MNASNet,0.8808801213960546,0.9519473950429944,0.8489857158520994,15816,1884,256,false,false,0.12737225275429867,1.412763,7851.00348290928,cuda,512,true,false
121
+ mnasnet 0.5,MNASNet,0.8808801213960546,0.9519473950429944,0.8489857158520994,15816,1884,256,false,false,0.06189475594737798,1.412763,16156.4575979617,cuda,512,true,true
122
+ mnasnet 1,MNASNet,0.9109129994941831,0.9635179564997471,0.8846857026294643,15816,1409,256,false,false,11.39003081200644,3.577563,87.7960750506383,cpu,1,false,false
123
+ mnasnet 1,MNASNet,0.9109129994941831,0.9635179564997471,0.8846857026294643,15816,1409,256,false,false,11.567504192993516,3.577563,86.4490717544502,cpu,1,true,false
124
+ mnasnet 1,MNASNet,0.9109129994941831,0.9635179564997471,0.8846857026294643,15816,1409,256,false,false,0.22489917993141267,3.577563,4446.43684474514,cuda,512,true,false
125
+ mnasnet 1,MNASNet,0.9109129994941831,0.9635179564997471,0.8846857026294643,15816,1409,256,false,false,0.1147271869092492,3.577563,8716.32981632343,cuda,512,true,true
126
+ mobileclip i0,FastViT,0.9343702579666161,0.9755311077389985,0.9141578940280503,15816,1038,256,false,false,34.99577607150418,11.262451,28.5748770925033,cpu,1,false,false
127
+ mobileclip i0,FastViT,0.9343702579666161,0.9755311077389985,0.9141578940280503,15816,1038,256,false,false,32.166960607981295,11.262451,31.0877988190118,cpu,1,true,false
128
+ mobileclip i0,FastViT,0.9343702579666161,0.9755311077389985,0.9141578940280503,15816,1038,256,false,false,0.7531249402779833,11.262451,1327.80093516873,cuda,512,true,false
129
+ mobileclip i0,FastViT,0.9343702579666161,0.9755311077389985,0.9141578940280503,15816,1038,256,false,false,0.5664595146095047,11.262451,1765.35122847987,cuda,512,true,true
130
+ mobilenet v2 1,MobileNet v2,0.871206373292868,0.9516944865958523,0.8402715745245166,15816,2037,256,false,false,11.327229777001778,2.700211,88.2828387599542,cpu,1,false,false
131
+ mobilenet v2 1,MobileNet v2,0.871206373292868,0.9516944865958523,0.8402715745245166,15816,2037,256,false,false,11.35863593203248,2.700211,88.0387403895833,cpu,1,true,false
132
+ mobilenet v2 1,MobileNet v2,0.871206373292868,0.9516944865958523,0.8402715745245166,15816,2037,256,false,false,0.28847171418476564,2.700211,3466.54438139991,cuda,512,true,false
133
+ mobilenet v2 1,MobileNet v2,0.871206373292868,0.9516944865958523,0.8402715745245166,15816,2037,256,false,false,0.14461348050758718,2.700211,6914.9846645696,cuda,512,true,true
134
+ mobilenet v3 large 0.75,MobileNet v3 Large,0.8810065756196257,0.9504299443601416,0.851399365457298,15816,1882,256,false,false,10.238693877472544,3.122547,97.6687077440832,cpu,1,false,false
135
+ mobilenet v3 large 0.75,MobileNet v3 Large,0.8810065756196257,0.9504299443601416,0.851399365457298,15816,1882,256,false,false,10.181135442515375,3.122547,98.2208718905853,cpu,1,true,false
136
+ mobilenet v3 large 0.75,MobileNet v3 Large,0.8810065756196257,0.9504299443601416,0.851399365457298,15816,1882,256,false,false,0.1610212428710156,3.122547,6210.36070874847,cuda,512,true,false
137
+ mobilenet v3 large 0.75,MobileNet v3 Large,0.8810065756196257,0.9504299443601416,0.851399365457298,15816,1882,256,false,false,0.08410344702610945,3.122547,11890.1190778727,cuda,512,true,true
138
+ mobilenet v3 large 1,MobileNet v3 Large,0.8884041476985332,0.9515680323722813,0.860260168260108,15816,1765,256,false,false,11.314587421540633,4.677283,88.3814815992501,cpu,1,false,false
139
+ mobilenet v3 large 1,MobileNet v3 Large,0.8884041476985332,0.9515680323722813,0.860260168260108,15816,1765,256,false,false,11.246164523006886,4.677283,88.9192042277388,cpu,1,true,false
140
+ mobilenet v3 large 1,MobileNet v3 Large,0.8884041476985332,0.9515680323722813,0.860260168260108,15816,1765,256,false,false,0.20156246246585852,4.677283,4961.2412339395,cuda,512,true,false
141
+ mobilenet v3 large 1,MobileNet v3 Large,0.8884041476985332,0.9515680323722813,0.860260168260108,15816,1765,256,false,false,0.10706168553724639,4.677283,9340.40964311274,cuda,512,true,true
142
+ mobilenet v4 hybrid m,MobileNet v4 Hybrid,0.9255816894284269,0.9733813859382904,0.9026837451864411,15816,1177,256,false,false,23.621482060989337,10.268899,42.3343462284905,cpu,1,false,false
143
+ mobilenet v4 hybrid m,MobileNet v4 Hybrid,0.9255816894284269,0.9733813859382904,0.9026837451864411,15816,1177,256,false,false,23.89455612050368,10.268899,41.8505367899222,cpu,1,true,false
144
+ mobilenet v4 hybrid m,MobileNet v4 Hybrid,0.9255816894284269,0.9733813859382904,0.9026837451864411,15816,1177,256,false,false,0.29417685452131054,10.268899,3399.31569948702,cuda,512,true,false
145
+ mobilenet v4 hybrid m,MobileNet v4 Hybrid,0.9255816894284269,0.9733813859382904,0.9026837451864411,15816,1177,256,false,false,0.16146214115281057,10.268899,6193.40232242791,cuda,512,true,true
146
+ mobilenet v4 l,MobileNet v4,0.9258978249873546,0.9753414264036419,0.9011702199736321,15816,1172,256,false,false,30.419259976500026,31.785115,32.87390951563371,cpu,1,false,false
147
+ mobilenet v4 l,MobileNet v4,0.9258978249873546,0.9753414264036419,0.9011702199736321,15816,1172,256,false,false,19.881046706000006,31.785115,50.29916255355935,cpu,1,true,false
148
+ mobilenet v4 l,MobileNet v4,0.9258978249873546,0.9753414264036419,0.9011702199736321,15816,1172,256,false,false,0.40106037837890574,31.785115,2493.3901574671136,cuda,512,true,false
149
+ mobilenet v4 l,MobileNet v4,0.9258978249873546,0.9753414264036419,0.9011702199736321,15816,1172,256,false,false,0.18814474328124997,31.785115,5315.056815088054,cuda,512,true,true
150
+ mobilenet v4 m,MobileNet v4,0.9272888214466363,0.9754046535154274,0.904667296593524,15816,1150,256,false,false,16.241447319975123,8.909763,61.5708674417282,cpu,1,false,false
151
+ mobilenet v4 m,MobileNet v4,0.9272888214466363,0.9754046535154274,0.904667296593524,15816,1150,256,false,false,16.27776411303784,8.909763,61.4334986706829,cpu,1,true,false
152
+ mobilenet v4 m,MobileNet v4,0.9272888214466363,0.9754046535154274,0.904667296593524,15816,1150,256,false,false,0.24604877387673674,8.909763,4064.23484353948,cuda,512,true,false
153
+ mobilenet v4 m,MobileNet v4,0.9272888214466363,0.9754046535154274,0.904667296593524,15816,1150,256,false,false,0.11695773629412543,8.909763,8550.09708366105,cuda,512,true,true
154
+ mobilenet v4 s,MobileNet v4,0.8913125948406677,0.9552984319676278,0.8626185221056373,15816,1719,256,false,false,8.397683447983546,2.968275,119.080459056851,cpu,1,false,false
155
+ mobilenet v4 s,MobileNet v4,0.8913125948406677,0.9552984319676278,0.8626185221056373,15816,1719,256,false,false,8.506907378032363,2.968275,117.551532603062,cpu,1,true,false
156
+ mobilenet v4 s,MobileNet v4,0.8913125948406677,0.9552984319676278,0.8626185221056373,15816,1719,256,false,false,0.09288166049316222,2.968275,10766.3880543309,cuda,512,true,false
157
+ mobilenet v4 s,MobileNet v4,0.8913125948406677,0.9552984319676278,0.8626185221056373,15816,1719,256,false,false,0.03740654385239842,2.968275,26733.2904089155,cuda,512,true,true
158
+ mobileone s0 (r),MobileOne,0.9076251896813353,0.9676277187658068,0.880279796300111,15816,1461,256,false,false,37.9952509294963,1.433779,26.3190787147476,cpu,1,false,false
159
+ mobileone s0 (r),MobileOne,0.9076251896813353,0.9676277187658068,0.880279796300111,15816,1461,256,false,false,36.2697904760135,1.433779,27.5711545855589,cpu,1,true,false
160
+ mobileone s0 (r),MobileOne,0.9076251896813353,0.9676277187658068,0.880279796300111,15816,1461,256,false,false,0.6615809043410096,1.433779,1511.5309305913,cuda,512,true,false
161
+ mobileone s0 (r),MobileOne,0.9076251896813353,0.9676277187658068,0.880279796300111,15816,1461,256,false,false,0.5805599677148611,1.433779,1722.47494765458,cuda,512,true,true
162
+ mobileone s1 (r),MobileOne,0.9294385432473444,0.9759104704097117,0.9054518310656464,15816,1116,256,false,false,20.9035622505471,3.959091,47.8387361931016,cpu,1,false,false
163
+ mobileone s1 (r),MobileOne,0.9294385432473444,0.9759104704097117,0.9054518310656464,15816,1116,256,false,false,20.048073324491252,3.959091,49.8801048766304,cpu,1,true,false
164
+ mobileone s1 (r),MobileOne,0.9294385432473444,0.9759104704097117,0.9054518310656464,15816,1116,256,false,false,0.5053577354544806,3.959091,1978.79626617504,cuda,512,true,false
165
+ mobileone s1 (r),MobileOne,0.9294385432473444,0.9759104704097117,0.9054518310656464,15816,1116,256,false,false,0.3548511866307534,3.959091,2818.08272784661,cuda,512,true,true
166
+ mobilevit v1 xs,MobileViT v1,0.9240642387455741,0.9740768841679313,0.9005687478157732,15816,1201,256,false,false,19.441772416525065,2.075712,51.435639641066,cpu,1,false,false
167
+ mobilevit v1 xs,MobileViT v1,0.9240642387455741,0.9740768841679313,0.9005687478157732,15816,1201,256,false,false,19.7332501200144,2.075712,50.6758893703857,cpu,1,true,false
168
+ mobilevit v1 xs,MobileViT v1,0.9240642387455741,0.9740768841679313,0.9005687478157732,15816,1201,256,false,false,0.47747594249528824,2.075712,2094.34635549176,cuda,512,true,false
169
+ mobilevit v1 xs,MobileViT v1,0.9240642387455741,0.9740768841679313,0.9005687478157732,15816,1201,256,false,false,0.2350911270946201,2.075712,4253.66968272485,cuda,512,true,true
170
+ mobilevit v1 xxs,MobileViT v1,0.8992159838138594,0.9627592311583207,0.869754937127325,15816,1594,256,false,false,14.364008762466254,1.07008,69.6184482018029,cpu,1,false,false
171
+ mobilevit v1 xxs,MobileViT v1,0.8992159838138594,0.9627592311583207,0.869754937127325,15816,1594,256,false,false,13.854086659499432,1.07008,72.1808679689702,cpu,1,true,false
172
+ mobilevit v1 xxs,MobileViT v1,0.8992159838138594,0.9627592311583207,0.869754937127325,15816,1594,256,false,false,0.22751909944361165,1.07008,4395.23539977724,cuda,512,true,false
173
+ mobilevit v1 xxs,MobileViT v1,0.8992159838138594,0.9627592311583207,0.869754937127325,15816,1594,256,false,false,0.10469746063449746,1.07008,9551.33003169041,cuda,512,true,true
174
+ mobilevit v2 1.5,MobileViT v2,0.9496079919069297,0.9853945371775418,0.929666308181477,15816,797,256,false,false,35.565709716524005,10.110729,28.1169701932138,cpu,1,false,false
175
+ mobilevit v2 1.5,MobileViT v2,0.9496079919069297,0.9853945371775418,0.929666308181477,15816,797,256,false,false,30.27076951396883,10.110729,33.0351694408871,cpu,1,true,false
176
+ mobilevit v2 1.5,MobileViT v2,0.9496079919069297,0.9853945371775418,0.929666308181477,15816,797,256,false,false,0.7962381166845459,10.110729,1255.90571343645,cuda,512,true,false
177
+ mobilevit v2 1.5,MobileViT v2,0.9496079919069297,0.9853945371775418,0.929666308181477,15816,797,256,false,false,0.4112848363234895,10.110729,2431.40498185901,cuda,512,true,true
178
+ mobilevit v2 1,MobileViT v2,0.9449924127465857,0.9822964087000505,0.924775949301759,15816,870,256,false,false,21.788416926516206,4.578825,45.8959456931914,cpu,1,false,false
179
+ mobilevit v2 1,MobileViT v2,0.9449924127465857,0.9822964087000505,0.924775949301759,15816,870,256,false,false,21.855775133008127,4.578825,45.7544971026779,cpu,1,true,false
180
+ mobilevit v2 1,MobileViT v2,0.9449924127465857,0.9822964087000505,0.924775949301759,15816,870,256,false,false,0.5227380744480556,4.578825,1913.00394763835,cuda,512,true,false
181
+ mobilevit v2 1,MobileViT v2,0.9449924127465857,0.9822964087000505,0.924775949301759,15816,870,256,false,false,0.2720838139993017,4.578825,3675.33807065262,cuda,512,true,true
182
+ moganet xt,MogaNet,0.9511254425897825,0.9862164896307537,0.9344371331833992,15816,773,256,false,false,42.17483799048941,2.834269,23.710820186802,cpu,1,false,false
183
+ moganet xt,MogaNet,0.9511254425897825,0.9862164896307537,0.9344371331833992,15816,773,256,false,false,40.3329807139816,2.834269,24.7936051910328,cpu,1,true,false
184
+ moganet xt,MogaNet,0.9511254425897825,0.9862164896307537,0.9344371331833992,15816,773,256,false,false,0.7761655736766202,2.834269,1288.38489352613,cuda,512,true,false
185
+ moganet xt,MogaNet,0.9511254425897825,0.9862164896307537,0.9344371331833992,15816,773,256,false,false,0.45712190006838727,2.834269,2187.60028747342,cuda,512,true,true
186
+ pit t,PiT,0.8428806272129489,0.9246332827516439,0.8049661245128393,15816,2485,256,false,false,10.989560650021305,4.78103,90.9954484848365,cpu,1,false,false
187
+ pit t,PiT,0.8428806272129489,0.9246332827516439,0.8049661245128393,15816,2485,256,false,false,11.076271116035054,4.78103,90.2830916220808,cpu,1,true,false
188
+ pit t,PiT,0.8428806272129489,0.9246332827516439,0.8049661245128393,15816,2485,256,false,false,0.1964083615820301,4.78103,5091.43293057994,cuda,512,true,false
189
+ pit t,PiT,0.8428806272129489,0.9246332827516439,0.8049661245128393,15816,2485,256,false,false,0.08266379473639042,4.78103,12097.1944632948,cuda,512,true,true
190
+ pvt v2 b0,PVT v2,0.931398583712696,0.976416287303996,0.908408089934916,15816,1085,256,false,false,14.344575294526303,3.505107,69.712764544628,cpu,1,false,false
191
+ pvt v2 b0,PVT v2,0.931398583712696,0.976416287303996,0.908408089934916,15816,1085,256,false,false,14.383710688503934,3.505107,69.523089114914,cpu,1,true,false
192
+ pvt v2 b0,PVT v2,0.931398583712696,0.976416287303996,0.908408089934916,15816,1085,256,false,false,0.26696903201127514,3.505107,3745.75280311076,cuda,512,true,false
193
+ pvt v2 b0,PVT v2,0.931398583712696,0.976416287303996,0.908408089934916,15816,1085,256,false,false,0.1365080084667625,3.505107,7325.57753374216,cuda,512,true,true
194
+ pvt v2 b0 li,PVT v2,0.9288694992412747,0.9769221041982802,0.905991145598634,15816,1125,256,false,false,14.29139778349782,3.232211,69.9721619360909,cpu,1,false,false
195
+ pvt v2 b0 li,PVT v2,0.9288694992412747,0.9769221041982802,0.905991145598634,15816,1125,256,false,false,14.619455033971452,3.232211,68.4020025148875,cpu,1,true,false
196
+ pvt v2 b0 li,PVT v2,0.9288694992412747,0.9769221041982802,0.905991145598634,15816,1125,256,false,false,0.3145488328419792,3.232211,3179.15660651131,cuda,512,true,false
197
+ pvt v2 b0 li,PVT v2,0.9288694992412747,0.9769221041982802,0.905991145598634,15816,1125,256,false,false,0.16877246629917392,3.232211,5925.13709094796,cuda,512,true,true
198
+ regionvit t,RegionViT,0.9530854830551341,0.9841299949418311,0.935847906591976,15816,742,256,false,false,29.887038194000016,13.572127,33.45932084366779,cpu,1,false,false
199
+ regnet x 400m,RegNet,0.9054122407688416,0.9650986342943855,0.8776048679457823,15816,1496,256,false,false,12.312787343515083,5.243747,81.21637872083298,cpu,1,false,false
200
+ regnet x 400m,RegNet,0.9054122407688416,0.9650986342943855,0.8776048679457823,15816,1496,256,false,false,10.825735291000454,5.243747,92.37247846169953,cpu,1,true,false
201
+ regnet x 400m,RegNet,0.9054122407688416,0.9650986342943855,0.8776048679457823,15816,1496,256,false,false,0.1483052566356946,5.243747,6742.84932769751,cuda,512,true,false
202
+ regnet x 400m,RegNet,0.9054122407688416,0.9650986342943855,0.8776048679457823,15816,1496,256,false,false,0.06892768770512703,5.243747,14507.958025198883,cuda,512,true,true
203
+ regnet y 200m,RegNet,0.8826504805260496,0.9543500252908447,0.8528969966149711,15816,1856,256,false,false,9.714209409547081,2.930895,102.941985069542,cpu,1,false,false
204
+ regnet y 200m,RegNet,0.8826504805260496,0.9543500252908447,0.8528969966149711,15816,1856,256,false,false,10.125048606016207,2.930895,98.7649579682817,cpu,1,true,false
205
+ regnet y 200m,RegNet,0.8826504805260496,0.9543500252908447,0.8528969966149711,15816,1856,256,false,false,0.10662045100559678,2.930895,9379.063684016,cuda,512,true,false
206
+ regnet y 200m,RegNet,0.8826504805260496,0.9543500252908447,0.8528969966149711,15816,1856,256,false,false,0.048744920346734874,2.930895,20514.9581307498,cuda,512,true,true
207
+ regnet y 400m,RegNet,0.9183737986848761,0.9730652503793626,0.8925897246818734,15816,1291,256,false,false,13.00503843504703,4.066755,76.8932752482391,cpu,1,false,false
208
+ regnet y 400m,RegNet,0.9183737986848761,0.9730652503793626,0.8925897246818734,15816,1291,256,false,false,12.986376342014402,4.066755,77.0037748532462,cpu,1,true,false
209
+ regnet y 400m,RegNet,0.9183737986848761,0.9730652503793626,0.8925897246818734,15816,1291,256,false,false,0.20696544419422472,4.066755,4831.72446440653,cuda,512,true,false
210
+ regnet y 400m,RegNet,0.9183737986848761,0.9730652503793626,0.8925897246818734,15816,1291,256,false,false,0.09006707460969189,4.066755,11102.836461976,cuda,512,true,true
211
+ regnet y 600m,RegNet,0.9265933232169955,0.9768588770864947,0.9046620481876397,15816,1161,256,false,false,13.217048962484114,5.672099,75.6598543924931,cpu,1,false,false
212
+ regnet y 600m,RegNet,0.9265933232169955,0.9768588770864947,0.9046620481876397,15816,1161,256,false,false,13.39858326496324,5.672099,74.6347565428772,cpu,1,true,false
213
+ regnet y 600m,RegNet,0.9265933232169955,0.9768588770864947,0.9046620481876397,15816,1161,256,false,false,0.23665727093771213,5.672099,4225.51986692688,cuda,512,true,false
214
+ regnet y 600m,RegNet,0.9265933232169955,0.9768588770864947,0.9046620481876397,15816,1161,256,false,false,0.09962974424809054,5.672099,10037.1631739802,cuda,512,true,true
215
+ regnet z 500m,RegNet Z,0.9275417298937785,0.9752781992918563,0.9046422230302241,15816,1146,256,false,false,18.004002143978145,6.478017,55.5432060051422,cpu,1,false,false
216
+ regnet z 500m,RegNet Z,0.9275417298937785,0.9752781992918563,0.9046422230302241,15816,1146,256,false,false,14.954498778504783,6.478017,66.8695096245803,cpu,1,true,false
217
+ regnet z 500m,RegNet Z,0.9275417298937785,0.9752781992918563,0.9046422230302241,15816,1146,256,false,false,0.3604591619136954,6.478017,2774.23937483223,cuda,512,true,false
218
+ regnet z 500m,RegNet Z,0.9275417298937785,0.9752781992918563,0.9046422230302241,15816,1146,256,false,false,0.17375179422856477,6.478017,5755.33625100028,cuda,512,true,true
219
+ repghost 1 (r),RepGhost,0.906044511886697,0.9649721800708143,0.8780853417442194,15816,1486,256,false,false,15.429795297503013,3.253023,64.8096737979297,cpu,1,false,false
220
+ repghost 1 (r),RepGhost,0.906044511886697,0.9649721800708143,0.8780853417442194,15816,1486,256,false,false,15.41258407500572,3.253023,64.8820467180244,cpu,1,true,false
221
+ repghost 1 (r),RepGhost,0.906044511886697,0.9649721800708143,0.8780853417442194,15816,1486,256,false,false,0.184295790488136,3.253023,5426.05990810395,cuda,512,true,false
222
+ repghost 1 (r),RepGhost,0.906044511886697,0.9649721800708143,0.8780853417442194,15816,1486,256,false,false,0.09535095675801084,3.253023,10487.5717454821,cuda,512,true,true
223
+ resnest 14,ResNeSt,0.9284901365705615,0.9748988366211432,0.9051016635455327,15816,1131,256,false,false,12.230084712500691,9.322387,81.765582455686,cpu,1,false,false
224
+ resnest 14,ResNeSt,0.9284901365705615,0.9748988366211432,0.9051016635455327,15816,1131,256,false,false,12.471949153987222,9.322387,80.1799291877569,cpu,1,true,false
225
+ resnest 14,ResNeSt,0.9284901365705615,0.9748988366211432,0.9051016635455327,15816,1131,256,false,false,0.45404511701122013,9.322387,2202.42430219834,cuda,512,true,false
226
+ resnest 14,ResNeSt,0.9284901365705615,0.9748988366211432,0.9051016635455327,15816,1131,256,false,false,0.24286380580576844,9.322387,4117.53409151364,cuda,512,true,true
227
+ shufflenet v1 4,ShuffleNet v1,0.8358624178047547,0.931398583712696,0.8023148233530545,15816,2596,256,false,false,10.39060590398731,1.283315,96.2407783761925,cpu,1,false,false
228
+ shufflenet v1 4,ShuffleNet v1,0.8358624178047547,0.931398583712696,0.8023148233530545,15816,2596,256,false,false,10.583155058498955,1.283315,94.489780644094,cpu,1,true,false
229
+ shufflenet v1 4,ShuffleNet v1,0.8358624178047547,0.931398583712696,0.8023148233530545,15816,2596,256,false,false,0.1567243166209664,1.283315,6380.6307888933,cuda,512,true,false
230
+ shufflenet v1 4,ShuffleNet v1,0.8358624178047547,0.931398583712696,0.8023148233530545,15816,2596,256,false,false,0.08456232497565025,1.283315,11825.5972773685,cuda,512,true,true
231
+ shufflenet v2 1,ShuffleNet v2,0.8878983308042488,0.9573216995447648,0.8559561886589161,15816,1773,256,false,false,10.454390332510227,1.633879,95.6535931980921,cpu,1,false,false
232
+ shufflenet v2 1,ShuffleNet v2,0.8878983308042488,0.9573216995447648,0.8559561886589161,15816,1773,256,false,false,10.590515446499923,1.633879,94.4241104270795,cpu,1,true,false
233
+ shufflenet v2 1,ShuffleNet v2,0.8878983308042488,0.9573216995447648,0.8559561886589161,15816,1773,256,false,false,0.0996815466891125,1.633879,10031.9470675832,cuda,512,true,false
234
+ shufflenet v2 1,ShuffleNet v2,0.8878983308042488,0.9573216995447648,0.8559561886589161,15816,1773,256,false,false,0.06823840889694548,1.633879,14654.5034704753,cuda,512,true,true
235
+ squeezenext 1,SqueezeNext,0.8548305513404147,0.946320182094082,0.8215127664927104,15816,2296,259,false,false,13.206746072508398,0.833235,75.7188784057591,cpu,1,false,false
236
+ squeezenext 1,SqueezeNext,0.8548305513404147,0.946320182094082,0.8215127664927104,15816,2296,259,false,false,13.572903937019868,0.833235,73.6762011018524,cpu,1,true,false
237
+ squeezenext 1,SqueezeNext,0.8548305513404147,0.946320182094082,0.8215127664927104,15816,2296,259,false,false,0.12920495537628088,0.833235,7739.64123193047,cuda,512,true,false
238
+ squeezenext 1,SqueezeNext,0.8548305513404147,0.946320182094082,0.8215127664927104,15816,2296,259,false,false,0.057944894257957416,0.833235,17257.775905988,cuda,512,true,true
239
+ starnet esm10,StarNet,0.8830930703085483,0.954855842185129,0.8509277006096523,15816,1849,256,false,false,8.288271271000042,0.940519,120.65242163331637,cpu,1,false,false
240
+ starnet esm10,StarNet,0.8830930703085483,0.954855842185129,0.8509277006096523,15816,1849,256,false,false,5.244605376500033,0.940519,190.67211509960092,cpu,1,true,false
241
+ starnet esm10,StarNet,0.8830930703085483,0.954855842185129,0.8509277006096523,15816,1849,256,false,false,0.11330084879394464,0.940519,8826.059210012247,cuda,512,true,false
242
+ starnet esm10,StarNet,0.8830930703085483,0.954855842185129,0.8509277006096523,15816,1849,256,false,false,0.05452200990722633,0.940519,18341.216725164424,cuda,512,true,true
243
+ starnet s1,StarNet,0.9272255943348507,0.9740136570561456,0.9008984524750198,15816,1151,256,false,false,14.623289277500135,2.744403,68.38406742993399,cpu,1,false,false
244
+ starnet s1,StarNet,0.9272255943348507,0.9740136570561456,0.9008984524750198,15816,1151,256,false,false,9.511759281499963,2.744403,105.1330222312254,cpu,1,true,false
245
+ starnet s1,StarNet,0.9272255943348507,0.9740136570561456,0.9008984524750198,15816,1151,256,false,false,0.1932966928613289,2.744403,5173.394253141208,cuda,512,true,false
246
+ starnet s1,StarNet,0.9272255943348507,0.9740136570561456,0.9008984524750198,15816,1151,256,false,false,0.08606454891113113,2.744403,11619.185979032829,cuda,512,true,true
247
+ tiny vit 5m,Tiny ViT,0.9331689428426909,0.9723065250379362,0.9109830555951074,15816,1057,256,false,false,20.800365723494895,5.190855,48.0760777619625,cpu,1,false,false
248
+ tiny vit 5m,Tiny ViT,0.9331689428426909,0.9723065250379362,0.9109830555951074,15816,1057,256,false,false,21.08187383547191,5.190855,47.4341136752949,cpu,1,true,false
249
+ tiny vit 5m,Tiny ViT,0.9331689428426909,0.9723065250379362,0.9109830555951074,15816,1057,256,false,false,0.43286002967249776,5.190855,2310.21561578832,cuda,512,true,false
250
+ tiny vit 5m,Tiny ViT,0.9331689428426909,0.9723065250379362,0.9109830555951074,15816,1057,256,false,false,0.21135497138686793,5.190855,4731.37676127609,cuda,512,true,true
251
+ transnext micro,TransNeXt,0.960546282245827,0.9884926656550329,0.9443170300048229,15816,624,256,false,false,77.67252662650004,12.567139,12.874565093120372,cpu,1,false,false
252
+ transnext micro,TransNeXt,0.960546282245827,0.9884926656550329,0.9443170300048229,15816,624,256,false,false,47.812285434000046,12.567139,20.915126539608682,cpu,1,true,false
253
+ transnext micro,TransNeXt,0.960546282245827,0.9884926656550329,0.9443170300048229,15816,624,256,false,false,1.2771649995263668,12.567139,782.9841879246983,cuda,512,true,false
254
+ transnext micro,TransNeXt,0.960546282245827,0.9884926656550329,0.9443170300048229,15816,624,256,false,false,0.9658749792187493,12.567139,1035.3306810047536,cuda,512,true,true
255
+ van b0,VAN,0.9460040465351542,0.9830551340414769,0.9266090789536481,15816,854,256,false,false,19.339800807530988,3.944147,51.7068407245744,cpu,1,false,false
256
+ van b0,VAN,0.9460040465351542,0.9830551340414769,0.9266090789536481,15816,854,256,false,false,19.36771784245502,3.944147,51.632309399301,cpu,1,true,false
257
+ van b0,VAN,0.9460040465351542,0.9830551340414769,0.9266090789536481,15816,854,256,false,false,0.6656397450535665,3.944147,1502.31413828741,cuda,512,true,false
258
+ van b0,VAN,0.9460040465351542,0.9830551340414769,0.9266090789536481,15816,854,256,false,false,0.4296442427732928,3.944147,2327.50704058116,cuda,512,true,true
259
+ vitreg4 b16,ViT,0.9706626201315124,0.9935508345978755,0.9598875412146325,15816,464,256,true,true,35.42885812697936,86.090099,28.2255780419435,cpu,1,false,false
260
+ vitreg4 b16,ViT,0.9706626201315124,0.9935508345978755,0.9598875412146325,15816,464,256,true,true,35.37971438496601,86.090099,28.2647844219153,cpu,1,true,false
261
+ vitreg4 b16,ViT,0.9706626201315124,0.9935508345978755,0.9598875412146325,15816,464,256,true,true,1.1465963677585476,86.090099,872.14649210417,cuda,512,true,false
262
+ vitreg4 b16,ViT,0.9706626201315124,0.9935508345978755,0.9598875412146325,15816,464,256,true,true,0.6443679584913292,86.090099,1551.90832632541,cuda,512,true,true
263
+ xcit nano12 p16,XCiT,0.9007334344967122,0.9612417804754679,0.8713805660295914,15816,1570,256,false,false,19.68631689500763,2.970547,50.7967033820123,cpu,1,false,false
264
+ xcit nano12 p16,XCiT,0.9007334344967122,0.9612417804754679,0.8713805660295914,15816,1570,256,false,false,19.621848251554187,2.970547,50.9635986977319,cpu,1,true,false
265
+ xcit nano12 p16,XCiT,0.9007334344967122,0.9612417804754679,0.8713805660295914,15816,1570,256,false,false,0.22257619513197838,2.970547,4492.8434480922,cuda,512,true,false
266
+ xcit nano12 p16,XCiT,0.9007334344967122,0.9612417804754679,0.8713805660295914,15816,1570,256,false,false,0.09816799908207924,2.970547,10186.6189527189,cuda,512,true,true
267
+ xcit nano12 p8,XCiT,0.9377845220030349,0.9793247344461306,0.9169321884679081,15816,984,256,false,false,38.1600779530127,2.966339,26.2053972015288,cpu,1,false,false
268
+ xcit nano12 p8,XCiT,0.9377845220030349,0.9793247344461306,0.9169321884679081,15816,984,256,false,false,38.070501672511504,2.966339,26.2670560162868,cpu,1,true,false
269
+ xcit nano12 p8,XCiT,0.9377845220030349,0.9793247344461306,0.9169321884679081,15816,984,256,false,false,1.2496106755617125,2.966339,800.249245270324,cuda,512,true,false
270
+ xcit nano12 p8,XCiT,0.9377845220030349,0.9793247344461306,0.9169321884679081,15816,984,256,false,false,0.42417136708479497,2.966339,2357.53772554877,cuda,512,true,true