gsplat_library / src /math /Quaternion.ts
bilca's picture
Upload 56 files
352fb85 verified
raw
history blame
5.39 kB
import { Matrix3 } from "./Matrix3";
import { Vector3 } from "./Vector3";
class Quaternion {
public readonly x: number;
public readonly y: number;
public readonly z: number;
public readonly w: number;
constructor(x: number = 0, y: number = 0, z: number = 0, w: number = 1) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
equals(q: Quaternion): boolean {
if (this.x !== q.x) {
return false;
}
if (this.y !== q.y) {
return false;
}
if (this.z !== q.z) {
return false;
}
if (this.w !== q.w) {
return false;
}
return true;
}
normalize(): Quaternion {
const l = Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
return new Quaternion(this.x / l, this.y / l, this.z / l, this.w / l);
}
multiply(q: Quaternion): Quaternion {
const w1 = this.w,
x1 = this.x,
y1 = this.y,
z1 = this.z;
const w2 = q.w,
x2 = q.x,
y2 = q.y,
z2 = q.z;
return new Quaternion(
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2,
w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2,
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
);
}
inverse(): Quaternion {
const l = this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
return new Quaternion(-this.x / l, -this.y / l, -this.z / l, this.w / l);
}
apply(v: Vector3): Vector3 {
const vecQuat = new Quaternion(v.x, v.y, v.z, 0);
const conjugate = new Quaternion(-this.x, -this.y, -this.z, this.w);
const rotatedQuat = this.multiply(vecQuat).multiply(conjugate);
return new Vector3(rotatedQuat.x, rotatedQuat.y, rotatedQuat.z);
}
flat(): number[] {
return [this.x, this.y, this.z, this.w];
}
clone(): Quaternion {
return new Quaternion(this.x, this.y, this.z, this.w);
}
static FromEuler(e: Vector3): Quaternion {
const halfX = e.x / 2;
const halfY = e.y / 2;
const halfZ = e.z / 2;
const cy = Math.cos(halfY);
const sy = Math.sin(halfY);
const cp = Math.cos(halfX);
const sp = Math.sin(halfX);
const cz = Math.cos(halfZ);
const sz = Math.sin(halfZ);
const q = new Quaternion(
cy * sp * cz + sy * cp * sz,
sy * cp * cz - cy * sp * sz,
cy * cp * sz - sy * sp * cz,
cy * cp * cz + sy * sp * sz,
);
return q;
}
toEuler(): Vector3 {
const sinr_cosp = 2 * (this.w * this.x + this.y * this.z);
const cosr_cosp = 1 - 2 * (this.x * this.x + this.y * this.y);
const x = Math.atan2(sinr_cosp, cosr_cosp);
let y;
const sinp = 2 * (this.w * this.y - this.z * this.x);
if (Math.abs(sinp) >= 1) {
y = (Math.sign(sinp) * Math.PI) / 2;
} else {
y = Math.asin(sinp);
}
const siny_cosp = 2 * (this.w * this.z + this.x * this.y);
const cosy_cosp = 1 - 2 * (this.y * this.y + this.z * this.z);
const z = Math.atan2(siny_cosp, cosy_cosp);
return new Vector3(x, y, z);
}
static FromMatrix3(matrix: Matrix3): Quaternion {
const m = matrix.buffer;
const trace = m[0] + m[4] + m[8];
let x, y, z, w;
if (trace > 0) {
const s = 0.5 / Math.sqrt(trace + 1.0);
w = 0.25 / s;
x = (m[7] - m[5]) * s;
y = (m[2] - m[6]) * s;
z = (m[3] - m[1]) * s;
} else if (m[0] > m[4] && m[0] > m[8]) {
const s = 2.0 * Math.sqrt(1.0 + m[0] - m[4] - m[8]);
w = (m[7] - m[5]) / s;
x = 0.25 * s;
y = (m[1] + m[3]) / s;
z = (m[2] + m[6]) / s;
} else if (m[4] > m[8]) {
const s = 2.0 * Math.sqrt(1.0 + m[4] - m[0] - m[8]);
w = (m[2] - m[6]) / s;
x = (m[1] + m[3]) / s;
y = 0.25 * s;
z = (m[5] + m[7]) / s;
} else {
const s = 2.0 * Math.sqrt(1.0 + m[8] - m[0] - m[4]);
w = (m[3] - m[1]) / s;
x = (m[2] + m[6]) / s;
y = (m[5] + m[7]) / s;
z = 0.25 * s;
}
return new Quaternion(x, y, z, w);
}
static FromAxisAngle(axis: Vector3, angle: number): Quaternion {
const halfAngle = angle / 2;
const sin = Math.sin(halfAngle);
const cos = Math.cos(halfAngle);
return new Quaternion(axis.x * sin, axis.y * sin, axis.z * sin, cos);
}
static LookRotation(direction: Vector3): Quaternion {
const forward = new Vector3(0, 0, 1);
const dot = forward.dot(direction);
if (Math.abs(dot - -1.0) < 0.000001) {
return new Quaternion(0, 1, 0, Math.PI);
}
if (Math.abs(dot - 1.0) < 0.000001) {
return new Quaternion();
}
const rotAngle = Math.acos(dot);
const rotAxis = forward.cross(direction).normalize();
return Quaternion.FromAxisAngle(rotAxis, rotAngle);
}
toString(): string {
return `[${this.flat().join(", ")}]`;
}
}
export { Quaternion };