File size: 5,391 Bytes
352fb85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import { Matrix3 } from "./Matrix3";
import { Vector3 } from "./Vector3";

class Quaternion {
    public readonly x: number;
    public readonly y: number;
    public readonly z: number;
    public readonly w: number;

    constructor(x: number = 0, y: number = 0, z: number = 0, w: number = 1) {
        this.x = x;
        this.y = y;
        this.z = z;
        this.w = w;
    }

    equals(q: Quaternion): boolean {
        if (this.x !== q.x) {
            return false;
        }
        if (this.y !== q.y) {
            return false;
        }
        if (this.z !== q.z) {
            return false;
        }
        if (this.w !== q.w) {
            return false;
        }

        return true;
    }

    normalize(): Quaternion {
        const l = Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
        return new Quaternion(this.x / l, this.y / l, this.z / l, this.w / l);
    }

    multiply(q: Quaternion): Quaternion {
        const w1 = this.w,
            x1 = this.x,
            y1 = this.y,
            z1 = this.z;
        const w2 = q.w,
            x2 = q.x,
            y2 = q.y,
            z2 = q.z;

        return new Quaternion(
            w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
            w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2,
            w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2,
            w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
        );
    }

    inverse(): Quaternion {
        const l = this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
        return new Quaternion(-this.x / l, -this.y / l, -this.z / l, this.w / l);
    }

    apply(v: Vector3): Vector3 {
        const vecQuat = new Quaternion(v.x, v.y, v.z, 0);
        const conjugate = new Quaternion(-this.x, -this.y, -this.z, this.w);
        const rotatedQuat = this.multiply(vecQuat).multiply(conjugate);
        return new Vector3(rotatedQuat.x, rotatedQuat.y, rotatedQuat.z);
    }

    flat(): number[] {
        return [this.x, this.y, this.z, this.w];
    }

    clone(): Quaternion {
        return new Quaternion(this.x, this.y, this.z, this.w);
    }

    static FromEuler(e: Vector3): Quaternion {
        const halfX = e.x / 2;
        const halfY = e.y / 2;
        const halfZ = e.z / 2;
        const cy = Math.cos(halfY);
        const sy = Math.sin(halfY);
        const cp = Math.cos(halfX);
        const sp = Math.sin(halfX);
        const cz = Math.cos(halfZ);
        const sz = Math.sin(halfZ);

        const q = new Quaternion(
            cy * sp * cz + sy * cp * sz,
            sy * cp * cz - cy * sp * sz,
            cy * cp * sz - sy * sp * cz,
            cy * cp * cz + sy * sp * sz,
        );
        return q;
    }

    toEuler(): Vector3 {
        const sinr_cosp = 2 * (this.w * this.x + this.y * this.z);
        const cosr_cosp = 1 - 2 * (this.x * this.x + this.y * this.y);
        const x = Math.atan2(sinr_cosp, cosr_cosp);

        let y;
        const sinp = 2 * (this.w * this.y - this.z * this.x);
        if (Math.abs(sinp) >= 1) {
            y = (Math.sign(sinp) * Math.PI) / 2;
        } else {
            y = Math.asin(sinp);
        }

        const siny_cosp = 2 * (this.w * this.z + this.x * this.y);
        const cosy_cosp = 1 - 2 * (this.y * this.y + this.z * this.z);
        const z = Math.atan2(siny_cosp, cosy_cosp);

        return new Vector3(x, y, z);
    }

    static FromMatrix3(matrix: Matrix3): Quaternion {
        const m = matrix.buffer;
        const trace = m[0] + m[4] + m[8];
        let x, y, z, w;
        if (trace > 0) {
            const s = 0.5 / Math.sqrt(trace + 1.0);
            w = 0.25 / s;
            x = (m[7] - m[5]) * s;
            y = (m[2] - m[6]) * s;
            z = (m[3] - m[1]) * s;
        } else if (m[0] > m[4] && m[0] > m[8]) {
            const s = 2.0 * Math.sqrt(1.0 + m[0] - m[4] - m[8]);
            w = (m[7] - m[5]) / s;
            x = 0.25 * s;
            y = (m[1] + m[3]) / s;
            z = (m[2] + m[6]) / s;
        } else if (m[4] > m[8]) {
            const s = 2.0 * Math.sqrt(1.0 + m[4] - m[0] - m[8]);
            w = (m[2] - m[6]) / s;
            x = (m[1] + m[3]) / s;
            y = 0.25 * s;
            z = (m[5] + m[7]) / s;
        } else {
            const s = 2.0 * Math.sqrt(1.0 + m[8] - m[0] - m[4]);
            w = (m[3] - m[1]) / s;
            x = (m[2] + m[6]) / s;
            y = (m[5] + m[7]) / s;
            z = 0.25 * s;
        }
        return new Quaternion(x, y, z, w);
    }

    static FromAxisAngle(axis: Vector3, angle: number): Quaternion {
        const halfAngle = angle / 2;
        const sin = Math.sin(halfAngle);
        const cos = Math.cos(halfAngle);
        return new Quaternion(axis.x * sin, axis.y * sin, axis.z * sin, cos);
    }

    static LookRotation(direction: Vector3): Quaternion {
        const forward = new Vector3(0, 0, 1);
        const dot = forward.dot(direction);

        if (Math.abs(dot - -1.0) < 0.000001) {
            return new Quaternion(0, 1, 0, Math.PI);
        }
        if (Math.abs(dot - 1.0) < 0.000001) {
            return new Quaternion();
        }

        const rotAngle = Math.acos(dot);
        const rotAxis = forward.cross(direction).normalize();
        return Quaternion.FromAxisAngle(rotAxis, rotAngle);
    }

    toString(): string {
        return `[${this.flat().join(", ")}]`;
    }
}

export { Quaternion };