File size: 2,148 Bytes
056ccc3
5639711
c1d4001
056ccc3
 
d73399c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056ccc3
d73399c
 
a3ab611
d73399c
 
 
056ccc3
 
 
 
fd98f6f
056ccc3
 
 
fd98f6f
 
 
548ee28
fd98f6f
 
056ccc3
fd98f6f
 
180d132
fd98f6f
99700b8
 
 
 
 
 
fd98f6f
dafbc40
056ccc3
fd98f6f
61dba08
056ccc3
fd98f6f
 
61dba08
 
fd98f6f
 
392dd2d
 
056ccc3
fd98f6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import streamlit as st
from transformers import LayoutLMv3Processor, LayoutLMv3ForSequenceClassification
from pdf2image import convert_from_bytes
from PIL import Image

labels = [
    'budget',
    'email',
    'form',
    'handwritten',
    'invoice',
    'language',
    'letter',
    'memo',
    'news article',
    'questionnaire',
    'resume',
    'scientific publication',
    'specification',
]
id2label = {i: label for i, label in enumerate(labels)}
label2id = {v: k for k, v in id2label.items()}

processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
model = LayoutLMv3ForSequenceClassification.from_pretrained(
    "microsoft/layoutlmv3-base",
    num_labels=len(labels),
    id2label=id2label,
    label2id=label2id,
)

st.title("Document Classification with LayoutLMv3")

# File uploader for PDFs, JPGs, and PNGs
uploaded_file = st.file_uploader(
    "Upload Document", type=["pdf", "jpg", "png"], accept_multiple_files=False
)

if uploaded_file:
    # for uploaded_file in uploaded_files:
    if uploaded_file.type == "application/pdf":
        images = convert_from_bytes(uploaded_file.getvalue())
    else:
        images = [Image.open(uploaded_file)]

    # Process each image for classification
    for i, image in enumerate(images):
        st.image(image, caption=f'Uploaded Image {i}', use_container_width=True)
        # Prepare image for model input
        encoding = processor(
            image,
            return_tensors="pt",
            truncation=True,
            max_length=512,
        )
        outputs = model(**encoding)
        prediction = outputs.logits.argmax(-1)[0].item()

        # Display predictions (you may want to map indices to labels)
        st.write(f"Prediction: {id2label[prediction]}")

        # User feedback section
        feedback = st.radio(
            "Is the classification correct?", ("Yes", "No"),
            key=f'prediction-{i}'
        )
        if feedback == "No":
            correct_label = st.selectbox(
                "Please select the correct label:", labels
            )
            # Here you can implement logic to store or process feedback