João Pedro commited on
Commit
5639711
·
1 Parent(s): b5975ad

use sequence classifier and print encoding

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -1,11 +1,11 @@
1
  import streamlit as st
2
- from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
3
  from pdf2image import convert_from_bytes
4
  from PIL import Image
5
 
6
  # Load model and processor
7
  processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
8
- model = LayoutLMv3ForTokenClassification.from_pretrained("microsoft/layoutlmv3-base")
9
 
10
  st.title("Document Classification with LayoutLMv3")
11
 
@@ -26,6 +26,7 @@ if uploaded_file:
26
  st.image(image, caption=f'Uploaded Image {i}', use_container_width=True)
27
  # Prepare image for model input
28
  encoding = processor(image, return_tensors="pt")
 
29
  outputs = model(**encoding)
30
  predictions = outputs.logits.argmax(-1)
31
 
 
1
  import streamlit as st
2
+ from transformers import LayoutLMv3Processor, LayoutLMv3ForSequenceClassification
3
  from pdf2image import convert_from_bytes
4
  from PIL import Image
5
 
6
  # Load model and processor
7
  processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
8
+ model = LayoutLMv3ForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base")
9
 
10
  st.title("Document Classification with LayoutLMv3")
11
 
 
26
  st.image(image, caption=f'Uploaded Image {i}', use_container_width=True)
27
  # Prepare image for model input
28
  encoding = processor(image, return_tensors="pt")
29
+ st.text(f'encoding: {encoding}')
30
  outputs = model(**encoding)
31
  predictions = outputs.logits.argmax(-1)
32