Spaces:
Runtime error
Runtime error
import nbformat | |
from nbformat.v4 import new_notebook, new_markdown_cell, new_code_cell | |
from nbconvert import HTMLExporter | |
from huggingface_hub import InferenceClient | |
from e2b_code_interpreter import Sandbox | |
from vllm.lora.request import LoRARequest | |
from traitlets.config import Config | |
from vllm import LLM | |
import re | |
config = Config() | |
html_exporter = HTMLExporter(config=config, template_name="classic") | |
BASE_MODEL = LLM(model="Qwen/Qwen2.5-Coder-7B-Instruct", enable_lora=True) | |
# Constants | |
MAX_TURNS = 10 | |
with open("llama3_template.jinja", "r") as f: | |
llama_template = f.read() | |
def parse_exec_result_nb(execution): | |
"""Convert an E2B Execution object to Jupyter notebook cell output format""" | |
outputs = [] | |
if execution.logs.stdout: | |
outputs.append({ | |
'output_type': 'stream', | |
'name': 'stdout', | |
'text': ''.join(execution.logs.stdout) | |
}) | |
if execution.logs.stderr: | |
outputs.append({ | |
'output_type': 'stream', | |
'name': 'stderr', | |
'text': ''.join(execution.logs.stderr) | |
}) | |
if execution.error: | |
outputs.append({ | |
'output_type': 'error', | |
'ename': execution.error.name, | |
'evalue': execution.error.value, | |
'traceback': [line for line in execution.error.traceback.split('\n')] | |
}) | |
for result in execution.results: | |
output = { | |
'output_type': 'execute_result' if result.is_main_result else 'display_data', | |
'metadata': {}, | |
'data': {} | |
} | |
if result.text: | |
output['data']['text/plain'] = [result.text] # Array for text/plain | |
if result.html: | |
output['data']['text/html'] = result.html | |
if result.png: | |
output['data']['image/png'] = result.png | |
if result.svg: | |
output['data']['image/svg+xml'] = result.svg | |
if result.jpeg: | |
output['data']['image/jpeg'] = result.jpeg | |
if result.pdf: | |
output['data']['application/pdf'] = result.pdf | |
if result.latex: | |
output['data']['text/latex'] = result.latex | |
if result.json: | |
output['data']['application/json'] = result.json | |
if result.javascript: | |
output['data']['application/javascript'] = result.javascript | |
if result.is_main_result and execution.execution_count is not None: | |
output['execution_count'] = execution.execution_count | |
if output['data']: | |
outputs.append(output) | |
return outputs | |
system_template = """\ | |
<details> | |
<summary style="display: flex; align-items: center;"> | |
<div class="alert alert-block alert-info" style="margin: 0; width: 100%;"> | |
<b>System: <span class="arrow">▶</span></b> | |
</div> | |
</summary> | |
<div class="alert alert-block alert-info"> | |
{} | |
</div> | |
</details> | |
<style> | |
details > summary .arrow {{ | |
display: inline-block; | |
transition: transform 0.2s; | |
}} | |
details[open] > summary .arrow {{ | |
transform: rotate(90deg); | |
}} | |
</style> | |
""" | |
user_template = """<div class="alert alert-block alert-success"> | |
<b>User:</b> {} | |
</div> | |
""" | |
header_message = """<p align="center"> | |
<img src="https://huggingface.co/spaces/lvwerra/jupyter-agent/resolve/main/jupyter-agent.png" /> | |
</p> | |
<p style="text-align:center;">Let a LLM agent write and execute code inside a notebook!</p>""" | |
bad_html_bad = """input[type="file"] { | |
display: block; | |
}""" | |
def create_base_notebook(messages): | |
base_notebook = { | |
"metadata": { | |
"kernel_info": {"name": "python3"}, | |
"language_info": { | |
"name": "python", | |
"version": "3.12", | |
}, | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"cells": [] | |
} | |
base_notebook["cells"].append({ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": header_message | |
}) | |
if len(messages)==0: | |
base_notebook["cells"].append({ | |
"cell_type": "code", | |
"execution_count": None, | |
"metadata": {}, | |
"source": "", | |
"outputs": [] | |
}) | |
code_cell_counter = 0 | |
for message in messages: | |
if message["role"] == "system": | |
text = system_template.format(message["content"].replace('\n', '<br>')) | |
base_notebook["cells"].append({ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": text | |
}) | |
elif message["role"] == "user": | |
# Check if this is an actual user prompt (has is_user_prompt flag) | |
if message.get("is_user_prompt", False): | |
text = user_template.format(message["content"].replace('\n', '<br>')) | |
base_notebook["cells"].append({ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": text | |
}) | |
else: | |
# This is an execution output, add as code cell output | |
base_notebook["cells"][-1]["outputs"].append({ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": message["content"] | |
}) | |
elif message["role"] == "assistant" and "tool_calls" in message: | |
base_notebook["cells"].append({ | |
"cell_type": "code", | |
"execution_count": None, | |
"metadata": {}, | |
"source": message["content"], | |
"outputs": [] | |
}) | |
elif message["role"] == "ipython": | |
code_cell_counter +=1 | |
base_notebook["cells"][-1]["outputs"] = message["nbformat"] | |
base_notebook["cells"][-1]["execution_count"] = code_cell_counter | |
elif message["role"] == "assistant" and "tool_calls" not in message: | |
base_notebook["cells"].append({ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": message["content"] | |
}) | |
else: | |
raise ValueError(message) | |
return base_notebook, code_cell_counter | |
def execute_code(sbx, code): | |
execution = sbx.run_code(code, on_stdout=lambda data: print('stdout:', data)) | |
output = "" | |
if len(execution.logs.stdout) > 0: | |
output += "\n".join(execution.logs.stdout) | |
if len(execution.logs.stderr) > 0: | |
output += "\n".join(execution.logs.stderr) | |
if execution.error is not None: | |
output += execution.error.traceback | |
return output, execution | |
def parse_exec_result_llm(execution): | |
output = "" | |
if len(execution.logs.stdout) > 0: | |
output += "\n".join(execution.logs.stdout) | |
if len(execution.logs.stderr) > 0: | |
output += "\n".join(execution.logs.stderr) | |
if execution.error is not None: | |
output += execution.error.traceback | |
return output | |
def update_notebook_display(notebook_data): | |
notebook = nbformat.from_dict(notebook_data) | |
notebook_body, _ = html_exporter.from_notebook_node(notebook) | |
notebook_body = notebook_body.replace(bad_html_bad, "") | |
return notebook_body | |
def run_interactive_notebook(lora_path, sampling_params, messages, sbx, notebook_data=None, max_new_tokens=512): | |
""" | |
Run interactive notebook with model. | |
Args: | |
lora_path: Path to LoRA adapter | |
sampling_params: Sampling parameters for the model | |
messages: List of conversation messages | |
sbx: Sandbox environment for code execution | |
notebook_data: Existing notebook data when continuing a session | |
max_new_tokens: Maximum number of new tokens to generate | |
""" | |
# For first run or when notebook_data is not provided | |
if notebook_data is None: | |
# Create a separate list for display messages with is_user_prompt flag | |
display_messages = [] | |
model_messages = [] # Clean messages for model | |
for msg in messages: | |
display_msg = msg.copy() | |
if msg["role"] == "user": | |
display_msg["is_user_prompt"] = True | |
display_messages.append(display_msg) | |
model_messages.append(msg.copy()) # Keep clean copy for model | |
notebook_data, code_cell_counter = create_base_notebook(display_messages) | |
else: | |
# For subsequent runs, use existing messages but clean them for model | |
display_messages = messages | |
model_messages = [] | |
for msg in messages: | |
# Create clean copy without display flags for model | |
model_msg = msg.copy() | |
if "is_user_prompt" in model_msg: | |
del model_msg["is_user_prompt"] | |
model_messages.append(model_msg) | |
# Find the last code cell counter | |
code_cell_counter = 0 | |
for cell in notebook_data["cells"]: | |
if cell["cell_type"] == "code" and cell.get("execution_count"): | |
code_cell_counter = max(code_cell_counter, cell["execution_count"]) | |
turns = 0 | |
while turns < MAX_TURNS: | |
turns += 1 | |
# Generate response using the model with clean messages | |
print(model_messages) | |
response_stream = BASE_MODEL.chat( | |
model_messages, | |
sampling_params, | |
lora_request=LoRARequest("lora_adapter", 1, lora_path), | |
add_generation_prompt=True | |
)[0].outputs[0].text | |
# Check for duplicate responses | |
is_duplicate = any( | |
msg["role"] == "assistant" and msg["content"].strip() == response_stream.strip() | |
for msg in model_messages | |
) | |
if is_duplicate: | |
# If duplicate found, yield current state and break | |
yield update_notebook_display(notebook_data), notebook_data, display_messages | |
break | |
# Add the full response as an assistant message | |
assistant_msg = { | |
"role": "assistant", | |
"content": response_stream | |
} | |
model_messages.append(assistant_msg.copy()) | |
display_messages.append(assistant_msg) | |
# Check if response contains code block | |
code_match = re.search(r'```python\n(.*?)```', response_stream, re.DOTALL) | |
if code_match: | |
# Extract and execute the code | |
code = code_match.group(1).strip() | |
code_cell_counter += 1 | |
# Add code cell | |
notebook_data["cells"].append({ | |
"cell_type": "code", | |
"execution_count": code_cell_counter, | |
"metadata": {}, | |
"source": code, | |
"outputs": [] | |
}) | |
# Execute code and get results | |
exec_result, execution = execute_code(sbx, code) | |
# Get execution results in notebook format | |
outputs = parse_exec_result_nb(execution) | |
# Create text-only version for user message | |
user_content = [] | |
for output in outputs: | |
if output.get('output_type') == 'stream': | |
user_content.append(output['text']) | |
elif output.get('output_type') == 'error': | |
user_content.append('\n'.join(output['traceback'])) | |
elif output.get('output_type') in ['execute_result', 'display_data']: | |
data = output.get('data', {}) | |
if 'text/plain' in data: | |
user_content.append('\n'.join(data['text/plain'])) | |
if any(key.startswith('image/') for key in data.keys()): | |
user_content.append('<image>') | |
# Create execution result message | |
user_msg = { | |
"role": "user", | |
"content": '\n'.join(user_content) | |
} | |
# Add clean version to model messages | |
model_messages.append(user_msg.copy()) | |
# Add version with display flag to display messages | |
display_msg = user_msg.copy() | |
display_msg["is_user_prompt"] = False | |
display_messages.append(display_msg) | |
# Update cell with execution results | |
notebook_data["cells"][-1]["outputs"] = outputs | |
# Yield intermediate results after each turn | |
yield update_notebook_display(notebook_data), notebook_data, display_messages | |
else: | |
# No code in this turn, add as markdown and break | |
notebook_data["cells"].append({ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": response_stream | |
}) | |
# Yield final results and break | |
yield update_notebook_display(notebook_data), notebook_data, display_messages | |
break | |
# Final yield in case we hit MAX_TURNS | |
yield update_notebook_display(notebook_data), notebook_data, display_messages | |
def update_notebook_with_cell(notebook_data, code, output): | |
"""Add a code cell and its output to the notebook""" | |
cell = { | |
"cell_type": "code", | |
"execution_count": None, | |
"metadata": {}, | |
"source": code, | |
"outputs": [{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": str(output) | |
}] if output else [] | |
} | |
notebook_data['cells'].append(cell) | |
return notebook_data | |
def update_notebook_with_markdown(notebook_data, markdown_text): | |
"""Add a markdown cell to the notebook""" | |
cell = { | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": markdown_text | |
} | |
notebook_data['cells'].append(cell) | |
return notebook_data |