Spaces:
Runtime error
Runtime error
File size: 13,866 Bytes
f7a9983 e19a951 f7a9983 e19a951 371a048 f7a9983 e19a951 f7a9983 371a048 f7a9983 5c34853 f7a9983 100570e dfa06cf a73b1a6 100570e 6fef5b1 f7a9983 7b6df75 2018677 f7a9983 7b6df75 e9163a2 100570e e9163a2 f7a9983 100570e f7a9983 e19a951 100570e 926febf 100570e f7a9983 100570e 571d707 100570e 926febf 100570e f7a9983 2018677 f7a9983 e19a951 033f69a e19a951 033f69a e19a951 033f69a e19a951 033f69a e19a951 371a048 e19a951 f7a9983 e19a951 fcd3706 371a048 fcd3706 371a048 fcd3706 371a048 fcd3706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import nbformat
from nbformat.v4 import new_notebook, new_markdown_cell, new_code_cell
from nbconvert import HTMLExporter
from huggingface_hub import InferenceClient
from e2b_code_interpreter import Sandbox
from vllm.lora.request import LoRARequest
from traitlets.config import Config
from vllm import LLM
import re
config = Config()
html_exporter = HTMLExporter(config=config, template_name="classic")
BASE_MODEL = LLM(model="Qwen/Qwen2.5-Coder-7B-Instruct", enable_lora=True)
# Constants
MAX_TURNS = 10
with open("llama3_template.jinja", "r") as f:
llama_template = f.read()
def parse_exec_result_nb(execution):
"""Convert an E2B Execution object to Jupyter notebook cell output format"""
outputs = []
if execution.logs.stdout:
outputs.append({
'output_type': 'stream',
'name': 'stdout',
'text': ''.join(execution.logs.stdout)
})
if execution.logs.stderr:
outputs.append({
'output_type': 'stream',
'name': 'stderr',
'text': ''.join(execution.logs.stderr)
})
if execution.error:
outputs.append({
'output_type': 'error',
'ename': execution.error.name,
'evalue': execution.error.value,
'traceback': [line for line in execution.error.traceback.split('\n')]
})
for result in execution.results:
output = {
'output_type': 'execute_result' if result.is_main_result else 'display_data',
'metadata': {},
'data': {}
}
if result.text:
output['data']['text/plain'] = [result.text] # Array for text/plain
if result.html:
output['data']['text/html'] = result.html
if result.png:
output['data']['image/png'] = result.png
if result.svg:
output['data']['image/svg+xml'] = result.svg
if result.jpeg:
output['data']['image/jpeg'] = result.jpeg
if result.pdf:
output['data']['application/pdf'] = result.pdf
if result.latex:
output['data']['text/latex'] = result.latex
if result.json:
output['data']['application/json'] = result.json
if result.javascript:
output['data']['application/javascript'] = result.javascript
if result.is_main_result and execution.execution_count is not None:
output['execution_count'] = execution.execution_count
if output['data']:
outputs.append(output)
return outputs
system_template = """\
<details>
<summary style="display: flex; align-items: center;">
<div class="alert alert-block alert-info" style="margin: 0; width: 100%;">
<b>System: <span class="arrow">▶</span></b>
</div>
</summary>
<div class="alert alert-block alert-info">
{}
</div>
</details>
<style>
details > summary .arrow {{
display: inline-block;
transition: transform 0.2s;
}}
details[open] > summary .arrow {{
transform: rotate(90deg);
}}
</style>
"""
user_template = """<div class="alert alert-block alert-success">
<b>User:</b> {}
</div>
"""
header_message = """<p align="center">
<img src="https://huggingface.co/spaces/lvwerra/jupyter-agent/resolve/main/jupyter-agent.png" />
</p>
<p style="text-align:center;">Let a LLM agent write and execute code inside a notebook!</p>"""
bad_html_bad = """input[type="file"] {
display: block;
}"""
def create_base_notebook(messages):
base_notebook = {
"metadata": {
"kernel_info": {"name": "python3"},
"language_info": {
"name": "python",
"version": "3.12",
},
},
"nbformat": 4,
"nbformat_minor": 0,
"cells": []
}
base_notebook["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": header_message
})
if len(messages)==0:
base_notebook["cells"].append({
"cell_type": "code",
"execution_count": None,
"metadata": {},
"source": "",
"outputs": []
})
code_cell_counter = 0
for message in messages:
if message["role"] == "system":
text = system_template.format(message["content"].replace('\n', '<br>'))
base_notebook["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": text
})
elif message["role"] == "user":
# Check if this is an actual user prompt (has is_user_prompt flag)
if message.get("is_user_prompt", False):
text = user_template.format(message["content"].replace('\n', '<br>'))
base_notebook["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": text
})
else:
# This is an execution output, add as code cell output
base_notebook["cells"][-1]["outputs"].append({
"output_type": "stream",
"name": "stdout",
"text": message["content"]
})
elif message["role"] == "assistant" and "tool_calls" in message:
base_notebook["cells"].append({
"cell_type": "code",
"execution_count": None,
"metadata": {},
"source": message["content"],
"outputs": []
})
elif message["role"] == "ipython":
code_cell_counter +=1
base_notebook["cells"][-1]["outputs"] = message["nbformat"]
base_notebook["cells"][-1]["execution_count"] = code_cell_counter
elif message["role"] == "assistant" and "tool_calls" not in message:
base_notebook["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": message["content"]
})
else:
raise ValueError(message)
return base_notebook, code_cell_counter
def execute_code(sbx, code):
execution = sbx.run_code(code, on_stdout=lambda data: print('stdout:', data))
output = ""
if len(execution.logs.stdout) > 0:
output += "\n".join(execution.logs.stdout)
if len(execution.logs.stderr) > 0:
output += "\n".join(execution.logs.stderr)
if execution.error is not None:
output += execution.error.traceback
return output, execution
def parse_exec_result_llm(execution):
output = ""
if len(execution.logs.stdout) > 0:
output += "\n".join(execution.logs.stdout)
if len(execution.logs.stderr) > 0:
output += "\n".join(execution.logs.stderr)
if execution.error is not None:
output += execution.error.traceback
return output
def update_notebook_display(notebook_data):
notebook = nbformat.from_dict(notebook_data)
notebook_body, _ = html_exporter.from_notebook_node(notebook)
notebook_body = notebook_body.replace(bad_html_bad, "")
return notebook_body
def run_interactive_notebook(lora_path, sampling_params, messages, sbx, notebook_data=None, max_new_tokens=512):
"""
Run interactive notebook with model.
Args:
lora_path: Path to LoRA adapter
sampling_params: Sampling parameters for the model
messages: List of conversation messages
sbx: Sandbox environment for code execution
notebook_data: Existing notebook data when continuing a session
max_new_tokens: Maximum number of new tokens to generate
"""
# For first run or when notebook_data is not provided
if notebook_data is None:
# Create a separate list for display messages with is_user_prompt flag
display_messages = []
model_messages = [] # Clean messages for model
for msg in messages:
display_msg = msg.copy()
if msg["role"] == "user":
display_msg["is_user_prompt"] = True
display_messages.append(display_msg)
model_messages.append(msg.copy()) # Keep clean copy for model
notebook_data, code_cell_counter = create_base_notebook(display_messages)
else:
# For subsequent runs, use existing messages but clean them for model
display_messages = messages
model_messages = []
for msg in messages:
# Create clean copy without display flags for model
model_msg = msg.copy()
if "is_user_prompt" in model_msg:
del model_msg["is_user_prompt"]
model_messages.append(model_msg)
# Find the last code cell counter
code_cell_counter = 0
for cell in notebook_data["cells"]:
if cell["cell_type"] == "code" and cell.get("execution_count"):
code_cell_counter = max(code_cell_counter, cell["execution_count"])
turns = 0
while turns < MAX_TURNS:
turns += 1
# Generate response using the model with clean messages
print(model_messages)
response_stream = BASE_MODEL.chat(
model_messages,
sampling_params,
lora_request=LoRARequest("lora_adapter", 1, lora_path),
add_generation_prompt=True
)[0].outputs[0].text
# Check for duplicate responses
is_duplicate = any(
msg["role"] == "assistant" and msg["content"].strip() == response_stream.strip()
for msg in model_messages
)
if is_duplicate:
# If duplicate found, yield current state and break
yield update_notebook_display(notebook_data), notebook_data, display_messages
break
# Add the full response as an assistant message
assistant_msg = {
"role": "assistant",
"content": response_stream
}
model_messages.append(assistant_msg.copy())
display_messages.append(assistant_msg)
# Check if response contains code block
code_match = re.search(r'```python\n(.*?)```', response_stream, re.DOTALL)
if code_match:
# Extract and execute the code
code = code_match.group(1).strip()
code_cell_counter += 1
# Add code cell
notebook_data["cells"].append({
"cell_type": "code",
"execution_count": code_cell_counter,
"metadata": {},
"source": code,
"outputs": []
})
# Execute code and get results
exec_result, execution = execute_code(sbx, code)
# Get execution results in notebook format
outputs = parse_exec_result_nb(execution)
# Create text-only version for user message
user_content = []
for output in outputs:
if output.get('output_type') == 'stream':
user_content.append(output['text'])
elif output.get('output_type') == 'error':
user_content.append('\n'.join(output['traceback']))
elif output.get('output_type') in ['execute_result', 'display_data']:
data = output.get('data', {})
if 'text/plain' in data:
user_content.append('\n'.join(data['text/plain']))
if any(key.startswith('image/') for key in data.keys()):
user_content.append('<image>')
# Create execution result message
user_msg = {
"role": "user",
"content": '\n'.join(user_content)
}
# Add clean version to model messages
model_messages.append(user_msg.copy())
# Add version with display flag to display messages
display_msg = user_msg.copy()
display_msg["is_user_prompt"] = False
display_messages.append(display_msg)
# Update cell with execution results
notebook_data["cells"][-1]["outputs"] = outputs
# Yield intermediate results after each turn
yield update_notebook_display(notebook_data), notebook_data, display_messages
else:
# No code in this turn, add as markdown and break
notebook_data["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": response_stream
})
# Yield final results and break
yield update_notebook_display(notebook_data), notebook_data, display_messages
break
# Final yield in case we hit MAX_TURNS
yield update_notebook_display(notebook_data), notebook_data, display_messages
def update_notebook_with_cell(notebook_data, code, output):
"""Add a code cell and its output to the notebook"""
cell = {
"cell_type": "code",
"execution_count": None,
"metadata": {},
"source": code,
"outputs": [{
"output_type": "stream",
"name": "stdout",
"text": str(output)
}] if output else []
}
notebook_data['cells'].append(cell)
return notebook_data
def update_notebook_with_markdown(notebook_data, markdown_text):
"""Add a markdown cell to the notebook"""
cell = {
"cell_type": "markdown",
"metadata": {},
"source": markdown_text
}
notebook_data['cells'].append(cell)
return notebook_data |