Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import torch | |
| from peft import PeftModel | |
| from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig | |
| tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-13b-hf") | |
| model = LlamaForCausalLM.from_pretrained( | |
| "decapoda-research/llama-13b-hf", | |
| load_in_8bit=True, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| ) | |
| model = PeftModel.from_pretrained( | |
| model, "baruga/alpaca-lora-13b", | |
| torch_dtype=torch.float16 | |
| ) | |
| def generate_prompt(instruction, input=None): | |
| if input: | |
| return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. Answer step by step. | |
| ### Instruction: | |
| {instruction} | |
| ### Input: | |
| {input} | |
| ### Response:""" | |
| else: | |
| return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. Answer step by step. | |
| ### Instruction: | |
| {instruction} | |
| ### Response:""" | |
| generation_config = GenerationConfig( | |
| temperature=0.1, | |
| top_p=0.75, | |
| num_beams=4, | |
| ) | |
| def evaluate(instruction, input=None): | |
| prompt = generate_prompt(instruction, input) | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| input_ids = inputs["input_ids"].cuda() | |
| generation_output = model.generate( | |
| input_ids=input_ids, | |
| generation_config=generation_config, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| max_new_tokens=256 | |
| ) | |
| for s in generation_output.sequences: | |
| output = tokenizer.decode(s) | |
| print("Response:", output.split("### Response:")[1].strip()) | |
