bhaskartripathi commited on
Commit
a1084bc
·
1 Parent(s): 3ce52c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -53
app.py CHANGED
@@ -1,15 +1,18 @@
1
-
2
  from peft import PeftModel
3
  from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
4
 
5
-
6
- tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
7
  model = LlamaForCausalLM.from_pretrained(
8
- "decapoda-research/llama-7b-hf",
9
- load_in_8bit=True,
10
- device_map="auto",
 
 
 
 
 
11
  )
12
- model = PeftModel.from_pretrained(model, "tloen/alpaca-lora-7b")
13
 
14
  def generate_prompt(instruction, input=None):
15
  if input:
@@ -51,49 +54,3 @@ def evaluate(instruction, input=None):
51
  output = tokenizer.decode(s)
52
  print("Response:", output.split("### Response:")[1].strip())
53
 
54
- import streamlit as st
55
- from peft import PeftModel
56
- from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
57
-
58
- model_name = 'bhaskar/LLaMA-7B-peft'
59
- tokenizer = LlamaTokenizer.from_pretrained(model_name)
60
- model = LlamaForCausalLM.from_pretrained(model_name).cuda()
61
- generation_config = GenerationConfig(
62
- do_sample=True,
63
- max_length=1024,
64
- top_p=0.9,
65
- temperature=1.0,
66
- no_repeat_ngram_size=3,
67
- num_return_sequences=1,
68
- )
69
-
70
- def generate_prompt(instruction):
71
- return f"### Instruction: {instruction}\n\n### Response:"
72
-
73
- def evaluate1(instruction):
74
- prompt = generate_prompt(instruction)
75
- inputs = tokenizer(prompt, return_tensors="pt")
76
- input_ids = inputs["input_ids"].cuda()
77
- generation_output = model.generate(
78
- input_ids=input_ids,
79
- generation_config=generation_config,
80
- return_dict_in_generate=True,
81
- output_scores=True,
82
- max_new_tokens=256
83
- )
84
- for s in generation_output.sequences:
85
- output = tokenizer.decode(s)
86
- return output.split("### Response:")[1].strip()
87
-
88
- def main():
89
- st.set_page_config(page_title="LLaMA-7B Language Model")
90
- st.title("LLaMA-7B Language Model")
91
- st.write("This is a LLaMA-7B language model fine-tuned on various text datasets to generate text for a given task. It was trained on PyTorch by and is capable of generating high-quality, coherent text that is similar to human writing. The model is highly versatile and can be used for a variety of tasks, including text completion, summarization, and translation.")
92
- instruction = st.text_area("Instruction", height=200)
93
- if st.button("Generate Response"):
94
- with st.spinner("Generating response..."):
95
- output = evaluate1(instruction)
96
- st.write(output)
97
-
98
- if __name__ == "__main__":
99
- main()
 
1
+ import torch
2
  from peft import PeftModel
3
  from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
4
 
5
+ tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-13b-hf")
 
6
  model = LlamaForCausalLM.from_pretrained(
7
+ "decapoda-research/llama-13b-hf",
8
+ load_in_8bit=True,
9
+ torch_dtype=torch.float16,
10
+ device_map="auto",
11
+ )
12
+ model = PeftModel.from_pretrained(
13
+ model, "baruga/alpaca-lora-13b",
14
+ torch_dtype=torch.float16
15
  )
 
16
 
17
  def generate_prompt(instruction, input=None):
18
  if input:
 
54
  output = tokenizer.decode(s)
55
  print("Response:", output.split("### Response:")[1].strip())
56