Spaces:
Running
Running
import subprocess | |
from threading import Thread | |
import torch | |
import spaces | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
CONTEXT_LENGTH = 4096 | |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): | |
stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"] | |
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' | |
for user, assistant in history: | |
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' | |
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
enc = tokenizer(instruction, return_tensors="pt", truncation=True, max_length=CONTEXT_LENGTH) | |
input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
streamer=streamer, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
top_p=top_p | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for new_token in streamer: | |
if new_token in stop_tokens: | |
break # Stop generation but don't add the stop token | |
outputs.append(new_token) | |
yield "".join(outputs).replace("<|im_end|>", "") # Ensure no leftover stop tokens | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_ID) | |
gr.ChatInterface( | |
predict, | |
additional_inputs=[ | |
gr.Textbox("You are a helpful assistant. Format responses clearly using natural Markdown formatting where appropriate.", | |
label="System prompt"), | |
gr.Slider(0, 1, 0.6, label="Temperature"), | |
gr.Slider(0, 4096, 512, label="Max new tokens"), | |
gr.Slider(1, 80, 40, label="Top K sampling"), | |
gr.Slider(0, 2, 1.1, label="Repetition penalty"), | |
gr.Slider(0, 1, 0.95, label="Top P sampling"), | |
], | |
css=".message { white-space: pre-wrap; }", # Preserve newlines | |
).queue().launch() |