import subprocess from threading import Thread import torch import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" MODEL_NAME = MODEL_ID.split("/")[-1] CONTEXT_LENGTH = 4096 def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"] instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' for user, assistant in history: instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) enc = tokenizer(instruction, return_tensors="pt", truncation=True, max_length=CONTEXT_LENGTH) input_ids, attention_mask = enc.input_ids, enc.attention_mask generate_kwargs = dict( input_ids=input_ids, attention_mask=attention_mask, streamer=streamer, do_sample=True, temperature=temperature, max_new_tokens=max_new_tokens, top_k=top_k, repetition_penalty=repetition_penalty, top_p=top_p ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for new_token in streamer: if new_token in stop_tokens: break # Stop generation but don't add the stop token outputs.append(new_token) yield "".join(outputs).replace("<|im_end|>", "") # Ensure no leftover stop tokens tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained(MODEL_ID) gr.ChatInterface( predict, additional_inputs=[ gr.Textbox("You are a helpful assistant. Format responses clearly using natural Markdown formatting where appropriate.", label="System prompt"), gr.Slider(0, 1, 0.6, label="Temperature"), gr.Slider(0, 4096, 512, label="Max new tokens"), gr.Slider(1, 80, 40, label="Top K sampling"), gr.Slider(0, 2, 1.1, label="Repetition penalty"), gr.Slider(0, 1, 0.95, label="Top P sampling"), ], css=".message { white-space: pre-wrap; }", # Preserve newlines ).queue().launch()