lm-similarity / app.py
Joschka Strueber
[Add] Test version for gradio app
2f2195a
raw
history blame
774 Bytes
from datasets import load_dataset
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
def compute_similarity(dataset_name):
# Load dataset
dataset = load_dataset(dataset_name)
# Dummy similarity computation (replace with your metric)
data = np.random.rand(10, 10)
# Create heatmap
fig, ax = plt.subplots()
cax = ax.matshow(data, cmap='viridis')
plt.colorbar(cax)
return fig
with gr.Blocks() as demo:
dataset_name = gr.Textbox(label="Enter Dataset Name (e.g., 'imdb')")
heatmap_plot = gr.Plot(label="Similarity Heatmap")
compute_button = gr.Button("Compute Similarity")
compute_button.click(
fn=compute_similarity,
inputs=dataset_name,
outputs=heatmap_plot
)
demo.launch()