from datasets import load_dataset import numpy as np import matplotlib.pyplot as plt import gradio as gr def compute_similarity(dataset_name): # Load dataset dataset = load_dataset(dataset_name) # Dummy similarity computation (replace with your metric) data = np.random.rand(10, 10) # Create heatmap fig, ax = plt.subplots() cax = ax.matshow(data, cmap='viridis') plt.colorbar(cax) return fig with gr.Blocks() as demo: dataset_name = gr.Textbox(label="Enter Dataset Name (e.g., 'imdb')") heatmap_plot = gr.Plot(label="Similarity Heatmap") compute_button = gr.Button("Compute Similarity") compute_button.click( fn=compute_similarity, inputs=dataset_name, outputs=heatmap_plot ) demo.launch()