Spaces:
Running
Running
import gradio as gr | |
import plotly.graph_objects as go | |
import numpy as np | |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets | |
def create_heatmap(selected_models, selected_dataset): | |
if not selected_models or not selected_dataset: | |
return None # Hide the plot if no selection | |
# Generate random similarity matrix | |
size = len(selected_models) | |
similarities = np.random.rand(size, size) | |
similarities = (similarities + similarities.T) / 2 # Make symmetric | |
similarities = np.round(similarities, 2) # Round for clarity | |
# Create the heatmap figure | |
fig = go.Figure(data=go.Heatmap( | |
z=similarities, | |
x=selected_models, | |
y=selected_models, | |
colorscale='Viridis', | |
zmin=0, zmax=1, | |
text=similarities, | |
hoverinfo="text" | |
)) | |
# Update layout for title, size, margins, etc. | |
fig.update_layout( | |
title=f"Similarity Matrix for {selected_dataset}", | |
xaxis_title="Models", | |
yaxis_title="Models", | |
width=800 + 20 * len(selected_models), | |
height=800 + 20 * len(selected_models), | |
margin=dict(b=100, l=100) | |
) | |
# Force axes to be categorical and explicitly set the order | |
fig.update_xaxes( | |
type="category", | |
tickangle=45, | |
categoryorder="array", | |
categoryarray=selected_models, # Explicitly force ordering to match your list | |
automargin=True, | |
showgrid=True, | |
showticklabels=True | |
) | |
fig.update_yaxes( | |
type="category", | |
categoryorder="array", | |
categoryarray=selected_models, | |
automargin=True, | |
showgrid=True, | |
showticklabels=True | |
) | |
return fig | |
def validate_inputs(selected_models, selected_dataset): | |
if not selected_models: | |
raise gr.Error("Please select at least one model!") | |
if not selected_dataset: | |
raise gr.Error("Please select a dataset!") | |
# Gradio interface setup | |
with gr.Blocks(title="LLM Similarity Analyzer") as demo: | |
gr.Markdown("## Model Similarity Comparison Tool") | |
with gr.Row(): | |
dataset_dropdown = gr.Dropdown( | |
choices=get_leaderboard_datasets(), | |
label="Select Dataset", | |
filterable=True, | |
interactive=True, | |
info="Leaderboard benchmark datasets" | |
) | |
model_dropdown = gr.Dropdown( | |
choices=get_leaderboard_models_cached(), | |
label="Select Models", | |
multiselect=True, | |
filterable=True, | |
allow_custom_value=False, | |
info="Search and select multiple models" | |
) | |
generate_btn = gr.Button("Generate Heatmap", variant="primary") | |
heatmap = gr.Plot(label="Similarity Heatmap", visible=True) | |
# Use a single output (the figure) | |
generate_btn.click( | |
fn=validate_inputs, | |
inputs=[model_dropdown, dataset_dropdown], | |
queue=False | |
).then( | |
fn=create_heatmap, | |
inputs=[model_dropdown, dataset_dropdown], | |
outputs=heatmap | |
) | |
# Clear button: clear selections and the plot | |
clear_btn = gr.Button("Clear Selection") | |
clear_btn.click( | |
lambda: [None, None, None], | |
outputs=[model_dropdown, dataset_dropdown, heatmap] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |