Spaces:
Running
Running
File size: 3,343 Bytes
2f2195a e1a6930 cdeeed6 2f2195a 53d5dd8 d8f2ec7 1a7f19c d8f2ec7 e1a6930 d8f2ec7 afa5fdc 1a7f19c afa5fdc 1a7f19c fbb8c61 60ded99 1a7f19c fbb8c61 60ded99 1a7f19c e1a6930 53d5dd8 8ad245f d35fe98 afa5fdc fbb8c61 e1a6930 60ded99 1a7f19c 60ded99 1a7f19c 60ded99 1a7f19c 60ded99 1a7f19c 53d5dd8 60ded99 53d5dd8 60ded99 53d5dd8 60ded99 e1a6930 cca1790 7fa11aa cca1790 fbb8c61 cca1790 60ded99 cca1790 60ded99 cca1790 60ded99 cca1790 b18c9e2 723cce8 cca1790 afa5fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
import plotly.graph_objects as go
import numpy as np
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
def create_heatmap(selected_models, selected_dataset):
if not selected_models or not selected_dataset:
return None # Hide the plot if no selection
# Generate random similarity matrix
size = len(selected_models)
similarities = np.random.rand(size, size)
similarities = (similarities + similarities.T) / 2 # Make symmetric
similarities = np.round(similarities, 2) # Round for clarity
# Create the heatmap figure
fig = go.Figure(data=go.Heatmap(
z=similarities,
x=selected_models,
y=selected_models,
colorscale='Viridis',
zmin=0, zmax=1,
text=similarities,
hoverinfo="text"
))
# Update layout for title, size, margins, etc.
fig.update_layout(
title=f"Similarity Matrix for {selected_dataset}",
xaxis_title="Models",
yaxis_title="Models",
width=800 + 20 * len(selected_models),
height=800 + 20 * len(selected_models),
margin=dict(b=100, l=100)
)
# Force axes to be categorical and explicitly set the order
fig.update_xaxes(
type="category",
tickangle=45,
categoryorder="array",
categoryarray=selected_models, # Explicitly force ordering to match your list
automargin=True,
showgrid=True,
showticklabels=True
)
fig.update_yaxes(
type="category",
categoryorder="array",
categoryarray=selected_models,
automargin=True,
showgrid=True,
showticklabels=True
)
return fig
def validate_inputs(selected_models, selected_dataset):
if not selected_models:
raise gr.Error("Please select at least one model!")
if not selected_dataset:
raise gr.Error("Please select a dataset!")
# Gradio interface setup
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
gr.Markdown("## Model Similarity Comparison Tool")
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=get_leaderboard_datasets(),
label="Select Dataset",
filterable=True,
interactive=True,
info="Leaderboard benchmark datasets"
)
model_dropdown = gr.Dropdown(
choices=get_leaderboard_models_cached(),
label="Select Models",
multiselect=True,
filterable=True,
allow_custom_value=False,
info="Search and select multiple models"
)
generate_btn = gr.Button("Generate Heatmap", variant="primary")
heatmap = gr.Plot(label="Similarity Heatmap", visible=True)
# Use a single output (the figure)
generate_btn.click(
fn=validate_inputs,
inputs=[model_dropdown, dataset_dropdown],
queue=False
).then(
fn=create_heatmap,
inputs=[model_dropdown, dataset_dropdown],
outputs=heatmap
)
# Clear button: clear selections and the plot
clear_btn = gr.Button("Clear Selection")
clear_btn.click(
lambda: [None, None, None],
outputs=[model_dropdown, dataset_dropdown, heatmap]
)
if __name__ == "__main__":
demo.launch()
|