File size: 3,343 Bytes
2f2195a
e1a6930
 
cdeeed6
2f2195a
53d5dd8
d8f2ec7
1a7f19c
 
d8f2ec7
e1a6930
 
d8f2ec7
afa5fdc
1a7f19c
afa5fdc
1a7f19c
fbb8c61
 
 
 
60ded99
1a7f19c
fbb8c61
 
60ded99
1a7f19c
e1a6930
53d5dd8
8ad245f
d35fe98
afa5fdc
 
fbb8c61
e1a6930
60ded99
1a7f19c
60ded99
 
 
1a7f19c
 
60ded99
 
 
 
 
 
1a7f19c
 
60ded99
 
 
 
 
1a7f19c
53d5dd8
60ded99
53d5dd8
 
 
 
 
60ded99
53d5dd8
60ded99
e1a6930
 
 
 
cca1790
 
 
 
 
 
 
7fa11aa
cca1790
 
 
 
 
 
 
 
 
 
fbb8c61
cca1790
60ded99
cca1790
 
 
 
 
 
 
60ded99
cca1790
 
60ded99
cca1790
 
b18c9e2
723cce8
cca1790
 
 
afa5fdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
import plotly.graph_objects as go
import numpy as np
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets

def create_heatmap(selected_models, selected_dataset):
    if not selected_models or not selected_dataset:
        return None  # Hide the plot if no selection

    # Generate random similarity matrix
    size = len(selected_models)
    similarities = np.random.rand(size, size)
    similarities = (similarities + similarities.T) / 2  # Make symmetric
    similarities = np.round(similarities, 2)  # Round for clarity

    # Create the heatmap figure
    fig = go.Figure(data=go.Heatmap(
        z=similarities,
        x=selected_models,
        y=selected_models,
        colorscale='Viridis',
        zmin=0, zmax=1,
        text=similarities,
        hoverinfo="text"
    ))
    
    # Update layout for title, size, margins, etc.
    fig.update_layout(
        title=f"Similarity Matrix for {selected_dataset}",
        xaxis_title="Models",
        yaxis_title="Models",
        width=800 + 20 * len(selected_models),
        height=800 + 20 * len(selected_models),
        margin=dict(b=100, l=100)
    )
    
    # Force axes to be categorical and explicitly set the order
    fig.update_xaxes(
        type="category",
        tickangle=45,
        categoryorder="array",
        categoryarray=selected_models,  # Explicitly force ordering to match your list
        automargin=True,
        showgrid=True,
        showticklabels=True
    )
    fig.update_yaxes(
        type="category",
        categoryorder="array",
        categoryarray=selected_models,
        automargin=True,
        showgrid=True,
        showticklabels=True
    )
    
    return fig


def validate_inputs(selected_models, selected_dataset):
    if not selected_models:
        raise gr.Error("Please select at least one model!")
    if not selected_dataset:
        raise gr.Error("Please select a dataset!")
    

# Gradio interface setup
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
    gr.Markdown("## Model Similarity Comparison Tool")
    
    with gr.Row():
        dataset_dropdown = gr.Dropdown(
            choices=get_leaderboard_datasets(),
            label="Select Dataset",
            filterable=True,
            interactive=True,
            info="Leaderboard benchmark datasets"
        )

        model_dropdown = gr.Dropdown(
            choices=get_leaderboard_models_cached(),
            label="Select Models",
            multiselect=True,
            filterable=True,
            allow_custom_value=False,
            info="Search and select multiple models"
        )
    
    generate_btn = gr.Button("Generate Heatmap", variant="primary")
    heatmap = gr.Plot(label="Similarity Heatmap", visible=True)
    
    # Use a single output (the figure)
    generate_btn.click(
        fn=validate_inputs,
        inputs=[model_dropdown, dataset_dropdown],
        queue=False
    ).then(
        fn=create_heatmap,
        inputs=[model_dropdown, dataset_dropdown],
        outputs=heatmap
    )
    
    # Clear button: clear selections and the plot
    clear_btn = gr.Button("Clear Selection")
    clear_btn.click(
        lambda: [None, None, None],
        outputs=[model_dropdown, dataset_dropdown, heatmap]
    )

if __name__ == "__main__":
    demo.launch()