lm-similarity / src /similarity.py
Joschka Strueber
[Add, Ref] integrate similarity computation, fix one-hot for EC, add login option
0f7de99
raw
history blame
2.27 kB
import numpy as np
from dataloading import load_run_data, get_leaderboard_datasets
from lmsim.metrics import Metrics, Kappa_p, EC
def load_data_and_compute_similarities(models: list[str], dataset: str, metric_name: str) -> np.array:
# Load data
probs = []
gts = []
for model in models:
model_probs, model_gt = load_run_data(model, dataset)
probs.append(model_probs)
gts.append(model_gt)
# Compute pairwise similarities
similarities = compute_pairwise_similarities(metric_name, probs, gts)
return similarities
def compute_similarity(metric: Metrics, probs_a: list[np.array], gt_a: list[int], probs_b: list[np.array], gt_b: list[int]) -> float:
# Check that the models have the same number of responses
assert len(probs_a) == len(probs_b), f"Models must have the same number of responses: {len(probs_a)} != {len(probs_b)}"
# Only keep responses where the ground truth is the same
output_a = []
output_b = []
gt = []
for i in range(len(probs_a)):
if gt_a == gt_b:
output_a.append(probs_a[i])
output_b.append(probs_b[i])
gt.append(gt_a[i])
# Placeholder similarity value
similarity = metric.compute_k(output_a, output_b, gt)
return similarity
def compute_pairwise_similarities(metric_name: str, probs: list[list[np.array]], gts: list[list[int]]) -> np.array:
# Select chosen metric
if metric_name == "Kappa_p (prob.)":
metric = Kappa_p()
elif metric_name == "Kappa_p (det.)":
metric = Kappa_p(prob=False)
# Convert probabilities to one-hot
probs = [[one_hot(p) for p in model_probs] for model_probs in probs]
elif metric_name == "Error Consistency":
metric = EC()
else:
raise ValueError(f"Invalid metric: {metric_name}")
similarities = np.zeros((len(probs), len(probs)))
for i in range(len(probs)):
for j in range(i, len(probs)):
similarities[i, j] = compute_similarity(metric, probs[i], gts[i], probs[j], gts[j])
similarities[j, i] = similarities[i, j]
return similarities
def one_hot(probs: np.array) -> np.array:
one_hot = np.zeros_like(probs)
one_hot[np.argmax(probs)] = 1
return one_hot