File size: 2,989 Bytes
2f2195a
3b16cfa
c8f741c
e1a6930
cdeeed6
2f2195a
c8f741c
 
53d5dd8
3b16cfa
d8f2ec7
3b16cfa
1a7f19c
3b16cfa
e1a6930
 
3b16cfa
54b2baf
1a7f19c
3b16cfa
 
 
 
 
 
 
 
 
 
 
 
e1a6930
53d5dd8
3b16cfa
 
 
 
 
e1a6930
1a7f19c
53d5dd8
 
 
 
 
 
 
e1a6930
 
 
 
cca1790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b16cfa
fbb8c61
cca1790
3b16cfa
cca1790
 
 
 
 
 
 
60ded99
cca1790
 
3b16cfa
cca1790
 
b18c9e2
723cce8
cca1790
 
 
c8f741c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import plotly.graph_objects as go
import plotly.io as pio
import numpy as np
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets

pio.renderers.default = "iframe"

def create_heatmap(selected_models, selected_dataset):
    # Return nothing if no inputs are provided
    if not selected_models or not selected_dataset:
        return None

    # Generate a random symmetric similarity matrix
    size = len(selected_models)
    similarities = np.random.rand(size, size)
    similarities = (similarities + similarities.T) / 2
    similarities = np.round(similarities, 2)

    # Create a heatmap trace using go.Heatmap; we set x and y to the model names.
    fig = go.Figure(data=go.Heatmap(
        z=similarities,
        x=selected_models,
        y=selected_models,
        colorscale="Viridis",
        zmin=0, zmax=1,
        text=similarities,
        hoverinfo="text"
    ))

    # Update layout: add title, axis titles, set fixed dimensions and margins
    fig.update_layout(
        title=f"Similarity Matrix for {selected_dataset}",
        xaxis_title="Models",
        yaxis_title="Models",
        width=800,
        height=800,
        margin=dict(l=100, r=100, t=100, b=100)
    )
    return fig

def validate_inputs(selected_models, selected_dataset):
    if not selected_models:
        raise gr.Error("Please select at least one model!")
    if not selected_dataset:
        raise gr.Error("Please select a dataset!")

with gr.Blocks(title="LLM Similarity Analyzer") as demo:
    gr.Markdown("## Model Similarity Comparison Tool")
    
    with gr.Row():
        dataset_dropdown = gr.Dropdown(
            choices=get_leaderboard_datasets(),
            label="Select Dataset",
            filterable=True,
            interactive=True,
            info="Leaderboard benchmark datasets"
        )
        model_dropdown = gr.Dropdown(
            choices=get_leaderboard_models_cached(),
            label="Select Models",
            multiselect=True,
            filterable=True,
            allow_custom_value=False,
            info="Search and select multiple models"
        )
    
    generate_btn = gr.Button("Generate Heatmap", variant="primary")
    # Initialize the Plot component without a figure (it will be updated)
    heatmap = gr.Plot(label="Similarity Heatmap", visible=True)
    
    # First validate inputs, then create the heatmap; note that we use a single output.
    generate_btn.click(
        fn=validate_inputs,
        inputs=[model_dropdown, dataset_dropdown],
        queue=False
    ).then(
        fn=create_heatmap,
        inputs=[model_dropdown, dataset_dropdown],
        outputs=heatmap
    )
    
    # Clear button to reset selections and clear the plot
    clear_btn = gr.Button("Clear Selection")
    clear_btn.click(
        lambda: [None, None, None],
        outputs=[model_dropdown, dataset_dropdown, heatmap]
    )

if __name__ == "__main__":
    demo.launch(ssr_mode=False)