File size: 2,612 Bytes
2f2195a
e1a6930
 
cdeeed6
 
 
2f2195a
 
53d5dd8
e1a6930
53d5dd8
e1a6930
53d5dd8
e1a6930
 
 
53d5dd8
e1a6930
 
53d5dd8
e1a6930
 
 
 
53d5dd8
e1a6930
 
 
53d5dd8
 
 
e1a6930
 
53d5dd8
 
 
 
 
 
 
 
 
 
2f2195a
e1a6930
 
 
 
 
 
53d5dd8
 
 
 
 
 
7fa11aa
e1a6930
 
 
 
 
 
 
7fa11aa
cdeeed6
53d5dd8
 
 
e1a6930
 
 
 
 
 
53d5dd8
 
 
 
 
 
 
e1a6930
53d5dd8
e1a6930
 
 
53d5dd8
 
 
 
 
 
 
cdeeed6
e1a6930
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
import plotly.graph_objects as go
import numpy as np


from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets


def create_heatmap(selected_models, selected_dataset):
    if not selected_models:
        return gr.Plot(visible=False)
    
    # Generate random similarity matrix (replace with actual computation)
    size = len(selected_models)
    similarities = np.random.rand(size, size)
    
    # Create symmetric matrix 
    similarities = (similarities + similarities.T) / 2
    
    # Create plot
    fig = go.Figure(data=go.Heatmap(
        z=similarities,
        x=selected_models,
        y=selected_models,
        colorscale='Viridis'
    ))
    
    fig.update_layout(
        title=f"Similarity Matrix for {selected_dataset}",
        width=800,
        height=800
    )
    
    with gr.Loading():
        return gr.Plot(value=fig, visible=True)


def validate_inputs(selected_models, selected_dataset):
    if not selected_models:
        raise gr.Error("Please select at least one model!")
    if not selected_dataset:
        raise gr.Error("Please select a dataset!")


with gr.Blocks(title="LLM Similarity Analyzer") as demo:
    gr.Markdown("## Model Similarity Comparison Tool")
    
    # Model selection section
    with gr.Row():
        dataset_dropdown = gr.Dropdown(
            choices=get_leaderboard_datasets(),
            label="Select Dataset",
            filterable=True,
            interactive=True,
            info="Leaderboard benchmark datasets"
        )

        model_dropdown = gr.Dropdown(
            choices=get_leaderboard_models_cached(),
            label="Select Models",
            multiselect=True,
            filterable=True,
            allow_custom_value=False,
            info="Search and select multiple models (click selected models to remove)"
        )
    
    # Add generate button
    generate_btn = gr.Button("Generate Heatmap", variant="primary")
    
    # Heatmap display
    heatmap = gr.Plot(
        label="Similarity Heatmap",
        visible=False,
        container=False
    )

    # Button click handler
    generate_btn.click(
        fn=validate_inputs,
        inputs=[model_dropdown, dataset_dropdown],
        queue=False
    ).then(
        fn=create_heatmap,
        inputs=[model_dropdown, dataset_dropdown],
        outputs=heatmap
    )

    clear_btn = gr.Button("Clear Selection")
    clear_btn.click(
        lambda: [None, None, gr.Plot(visible=False)],
        outputs=[model_dropdown, dataset_dropdown, heatmap]
    )



if __name__ == "__main__":
    demo.launch()