Spaces:
Running
Running
File size: 2,612 Bytes
2f2195a e1a6930 cdeeed6 2f2195a 53d5dd8 e1a6930 53d5dd8 e1a6930 53d5dd8 e1a6930 53d5dd8 e1a6930 53d5dd8 e1a6930 53d5dd8 e1a6930 53d5dd8 e1a6930 53d5dd8 2f2195a e1a6930 53d5dd8 7fa11aa e1a6930 7fa11aa cdeeed6 53d5dd8 e1a6930 53d5dd8 e1a6930 53d5dd8 e1a6930 53d5dd8 cdeeed6 e1a6930 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import gradio as gr
import plotly.graph_objects as go
import numpy as np
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
def create_heatmap(selected_models, selected_dataset):
if not selected_models:
return gr.Plot(visible=False)
# Generate random similarity matrix (replace with actual computation)
size = len(selected_models)
similarities = np.random.rand(size, size)
# Create symmetric matrix
similarities = (similarities + similarities.T) / 2
# Create plot
fig = go.Figure(data=go.Heatmap(
z=similarities,
x=selected_models,
y=selected_models,
colorscale='Viridis'
))
fig.update_layout(
title=f"Similarity Matrix for {selected_dataset}",
width=800,
height=800
)
with gr.Loading():
return gr.Plot(value=fig, visible=True)
def validate_inputs(selected_models, selected_dataset):
if not selected_models:
raise gr.Error("Please select at least one model!")
if not selected_dataset:
raise gr.Error("Please select a dataset!")
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
gr.Markdown("## Model Similarity Comparison Tool")
# Model selection section
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=get_leaderboard_datasets(),
label="Select Dataset",
filterable=True,
interactive=True,
info="Leaderboard benchmark datasets"
)
model_dropdown = gr.Dropdown(
choices=get_leaderboard_models_cached(),
label="Select Models",
multiselect=True,
filterable=True,
allow_custom_value=False,
info="Search and select multiple models (click selected models to remove)"
)
# Add generate button
generate_btn = gr.Button("Generate Heatmap", variant="primary")
# Heatmap display
heatmap = gr.Plot(
label="Similarity Heatmap",
visible=False,
container=False
)
# Button click handler
generate_btn.click(
fn=validate_inputs,
inputs=[model_dropdown, dataset_dropdown],
queue=False
).then(
fn=create_heatmap,
inputs=[model_dropdown, dataset_dropdown],
outputs=heatmap
)
clear_btn = gr.Button("Clear Selection")
clear_btn.click(
lambda: [None, None, gr.Plot(visible=False)],
outputs=[model_dropdown, dataset_dropdown, heatmap]
)
if __name__ == "__main__":
demo.launch() |