File size: 3,064 Bytes
2f2195a
e1a6930
 
cdeeed6
2f2195a
53d5dd8
d8f2ec7
afa5fdc
e1a6930
d8f2ec7
e1a6930
 
d8f2ec7
afa5fdc
e1a6930
afa5fdc
 
 
 
 
 
 
 
 
 
 
 
d35fe98
 
e1a6930
53d5dd8
8ad245f
d35fe98
 
 
afa5fdc
 
 
e1a6930
b05c242
afa5fdc
73afbb1
53d5dd8
 
 
 
 
 
 
e1a6930
 
 
 
cca1790
 
 
 
 
 
 
7fa11aa
cca1790
 
 
 
 
 
 
 
 
 
afa5fdc
cca1790
 
 
 
 
 
 
 
 
afa5fdc
cca1790
 
 
 
 
b18c9e2
723cce8
cca1790
 
43681ea
cca1790
afa5fdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
import plotly.graph_objects as go
import numpy as np
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets

def create_heatmap(selected_models, selected_dataset):
    if not selected_models or not selected_dataset:
        return None  # ✅ Just return None to hide the plot
    
    # Generate random similarity matrix
    size = len(selected_models)
    similarities = np.random.rand(size, size)
    similarities = (similarities + similarities.T) / 2  # Make symmetric
    similarities = np.round(similarities, 2)  # Round for clarity
    
    # Create the heatmap figure
    fig = go.Figure(
        data=go.Heatmap(
            z=similarities,  # ✅ Ensure it's a NumPy array
            x=selected_models,
            y=selected_models,
            colorscale='Viridis',
            zmin=0, zmax=1,  # Normalize scale
            text=similarities,  # ✅ Show values in heatmap
            hoverinfo="text"
        )
    )
    
    # Improve axis readability
    fig.update_layout(
        title=f"Similarity Matrix for {selected_dataset}",
        xaxis_title="Models",
        yaxis_title="Models",
        xaxis=dict(tickangle=45, automargin=True),
        yaxis=dict(automargin=True),
        width=800 + 20 * len(selected_models),
        height=800 + 20 * len(selected_models),
        margin=dict(b=100, l=100),  # Add bottom/left margin for labels
    )

    return fig  # ✅ Return only the figure


def validate_inputs(selected_models, selected_dataset):
    if not selected_models:
        raise gr.Error("Please select at least one model!")
    if not selected_dataset:
        raise gr.Error("Please select a dataset!")

with gr.Blocks(title="LLM Similarity Analyzer") as demo:
    gr.Markdown("## Model Similarity Comparison Tool")
    
    with gr.Row():
        dataset_dropdown = gr.Dropdown(
            choices=get_leaderboard_datasets(),
            label="Select Dataset",
            filterable=True,
            interactive=True,
            info="Leaderboard benchmark datasets"
        )

        model_dropdown = gr.Dropdown(
            choices=get_leaderboard_models_cached(),
            label="Select Models",
            multiselect=True,
            filterable=True,
            allow_custom_value=False,
            info="Search and select multiple models"
        )
    
    generate_btn = gr.Button("Generate Heatmap", variant="primary")
    heatmap = gr.Plot(label="Similarity Heatmap", visible=True)  # ✅ Ensure visible=True
    
    # Event handling
    generate_btn.click(
        fn=validate_inputs,
        inputs=[model_dropdown, dataset_dropdown],
        queue=False
    ).then(
        fn=create_heatmap,
        inputs=[model_dropdown, dataset_dropdown],
        outputs=heatmap  # ✅ Only one output (gr.Plot)
    )
    
    # Clear button
    clear_btn = gr.Button("Clear Selection")
    clear_btn.click(
        lambda: [None, None, None],
        outputs=[model_dropdown, dataset_dropdown, heatmap]
    )


if __name__ == "__main__":
    demo.launch()