Spaces:
Running
Running
File size: 3,215 Bytes
2f2195a e1a6930 cdeeed6 2f2195a 53d5dd8 d8f2ec7 fbb8c61 d8f2ec7 e1a6930 d8f2ec7 afa5fdc fbb8c61 90b2246 afa5fdc fbb8c61 e1a6930 53d5dd8 8ad245f d35fe98 afa5fdc fbb8c61 e1a6930 b05c242 fbb8c61 73afbb1 fbb8c61 53d5dd8 e1a6930 cca1790 7fa11aa cca1790 fbb8c61 cca1790 fbb8c61 cca1790 fbb8c61 cca1790 b18c9e2 723cce8 cca1790 afa5fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
import plotly.graph_objects as go
import numpy as np
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
def create_heatmap(selected_models, selected_dataset):
if not selected_models or not selected_dataset:
return None # Return None to hide the plot if inputs are missing
# Generate random similarity matrix
size = len(selected_models)
similarities = np.random.rand(size, size)
similarities = (similarities + similarities.T) / 2 # Make symmetric
similarities = np.round(similarities, 2) # Round for clarity
print(f"Generated heatmap with {len(selected_models)} models")
print("Sample coordinates:", selected_models[:2])
print("Sample similarity value:", similarities[0][0])
# Create the heatmap figure
fig = go.Figure(data=go.Heatmap(
z=similarities,
x=selected_models,
y=selected_models,
colorscale='Viridis',
zmin=0,
zmax=1,
text=similarities,
hoverinfo="text"
))
# Update layout with axis titles and margins
fig.update_layout(
title=f"Similarity Matrix for {selected_dataset}",
xaxis_title="Models",
yaxis_title="Models",
width=800 + 20 * len(selected_models),
height=800 + 20 * len(selected_models),
margin=dict(b=100, l=100)
)
# Force the axes to use category types so that model names appear
fig.update_xaxes(type="category", tickangle=45, automargin=True)
fig.update_yaxes(type="category", automargin=True)
return fig # Return only the figure
def validate_inputs(selected_models, selected_dataset):
if not selected_models:
raise gr.Error("Please select at least one model!")
if not selected_dataset:
raise gr.Error("Please select a dataset!")
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
gr.Markdown("## Model Similarity Comparison Tool")
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=get_leaderboard_datasets(),
label="Select Dataset",
filterable=True,
interactive=True,
info="Leaderboard benchmark datasets"
)
model_dropdown = gr.Dropdown(
choices=get_leaderboard_models_cached(),
label="Select Models",
multiselect=True,
filterable=True,
allow_custom_value=False,
info="Search and select multiple models"
)
generate_btn = gr.Button("Generate Heatmap", variant="primary")
heatmap = gr.Plot(label="Similarity Heatmap", visible=True)
# Event handling: Validate first then create the heatmap
generate_btn.click(
fn=validate_inputs,
inputs=[model_dropdown, dataset_dropdown],
queue=False
).then(
fn=create_heatmap,
inputs=[model_dropdown, dataset_dropdown],
outputs=heatmap # Only one output is needed
)
# Clear button
clear_btn = gr.Button("Clear Selection")
clear_btn.click(
lambda: [None, None, None],
outputs=[model_dropdown, dataset_dropdown, heatmap]
)
if __name__ == "__main__":
demo.launch()
|