File size: 2,744 Bytes
2f2195a
e1a6930
 
cdeeed6
2f2195a
53d5dd8
d8f2ec7
b9eaf09
e1a6930
d8f2ec7
e1a6930
 
d8f2ec7
e1a6930
73afbb1
d35fe98
e1a6930
 
 
d35fe98
 
e1a6930
d35fe98
 
e1a6930
53d5dd8
8ad245f
d35fe98
 
 
 
 
 
e1a6930
 
b9eaf09
73afbb1
53d5dd8
 
 
 
 
 
 
e1a6930
 
 
 
cca1790
 
 
 
 
 
 
7fa11aa
cca1790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723cce8
cca1790
 
 
 
 
b18c9e2
723cce8
cca1790
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gradio as gr
import plotly.graph_objects as go
import numpy as np
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets

def create_heatmap(selected_models, selected_dataset):
    if not selected_models or not selected_dataset:
        return None, False  # Hide plot
    
    # Generate random similarity matrix
    size = len(selected_models)
    similarities = np.random.rand(size, size)
    similarities = (similarities + similarities.T) / 2  # Make symmetric
    
    # Create plot with proper axis labels
    fig = go.Figure(data=go.Heatmap(
        z=similarities,
        x=selected_models,
        y=selected_models,
        colorscale='Viridis',
        hoverongaps=False
    ))
    
    # Improve axis readability
    fig.update_layout(
        title=f"Similarity Matrix for {selected_dataset}",
        xaxis_title="Models",
        yaxis_title="Models",
        xaxis=dict(tickangle=45, automargin=True),
        yaxis=dict(automargin=True),
        width=800 + 20*len(selected_models),
        height=800 + 20*len(selected_models),
        margin=dict(b=100, l=100)  # Add bottom/left margin for labels
    )
    
    return fig, True


def validate_inputs(selected_models, selected_dataset):
    if not selected_models:
        raise gr.Error("Please select at least one model!")
    if not selected_dataset:
        raise gr.Error("Please select a dataset!")

with gr.Blocks(title="LLM Similarity Analyzer") as demo:
    gr.Markdown("## Model Similarity Comparison Tool")
    
    with gr.Row():
        dataset_dropdown = gr.Dropdown(
            choices=get_leaderboard_datasets(),
            label="Select Dataset",
            filterable=True,
            interactive=True,
            info="Leaderboard benchmark datasets"
        )

        model_dropdown = gr.Dropdown(
            choices=get_leaderboard_models_cached(),
            label="Select Models",
            multiselect=True,
            filterable=True,
            allow_custom_value=False,
            info="Search and select multiple models"
        )
    
    generate_btn = gr.Button("Generate Heatmap", variant="primary")
    heatmap = gr.Plot(label="Similarity Heatmap", visible=False)
    
    # Event handling
    generate_btn.click(
        fn=validate_inputs,
        inputs=[model_dropdown, dataset_dropdown],
        queue=False
    ).then(
        fn=create_heatmap,
        inputs=[model_dropdown, dataset_dropdown],
        outputs=[heatmap, heatmap.visible])]
    )
    
    # Clear button
    clear_btn = gr.Button("Clear Selection")
    clear_btn.click(
        lambda: [None, None, None],
        outputs=[model_dropdown, dataset_dropdown, heatmap]
    )

if __name__ == "__main__":
    demo.launch()