Spaces:
Running
Running
File size: 2,830 Bytes
2f2195a 54b2baf e1a6930 cdeeed6 2f2195a 53d5dd8 d8f2ec7 54b2baf 1a7f19c d8f2ec7 e1a6930 54b2baf 1a7f19c 54b2baf e1a6930 53d5dd8 54b2baf fbb8c61 e1a6930 1a7f19c 53d5dd8 60ded99 53d5dd8 60ded99 e1a6930 cca1790 7fa11aa cca1790 fbb8c61 cca1790 60ded99 cca1790 60ded99 cca1790 60ded99 cca1790 b18c9e2 723cce8 cca1790 afa5fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import gradio as gr
import plotly.express as px
import numpy as np
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
def create_heatmap(selected_models, selected_dataset):
if not selected_models or not selected_dataset:
return None # Hide plot if inputs are missing
# Generate random similarity matrix
size = len(selected_models)
similarities = np.random.rand(size, size)
similarities = (similarities + similarities.T) / 2 # make symmetric
similarities = np.round(similarities, 2)
# Use Plotly Express imshow to create a heatmap
fig = px.imshow(similarities,
x=selected_models,
y=selected_models,
color_continuous_scale='Viridis',
zmin=0, zmax=1,
text_auto=True)
# Move x-axis labels to top and adjust tick angle for readability
fig.update_xaxes(side="top", tickangle=45)
# Update overall layout: title, dimensions, margins
fig.update_layout(
title=f"Similarity Matrix for {selected_dataset}",
width=800 + 20 * size,
height=800 + 20 * size,
margin=dict(b=100, l=100)
)
return fig
def validate_inputs(selected_models, selected_dataset):
if not selected_models:
raise gr.Error("Please select at least one model!")
if not selected_dataset:
raise gr.Error("Please select a dataset!")
# Gradio interface setup
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
gr.Markdown("## Model Similarity Comparison Tool")
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=get_leaderboard_datasets(),
label="Select Dataset",
filterable=True,
interactive=True,
info="Leaderboard benchmark datasets"
)
model_dropdown = gr.Dropdown(
choices=get_leaderboard_models_cached(),
label="Select Models",
multiselect=True,
filterable=True,
allow_custom_value=False,
info="Search and select multiple models"
)
generate_btn = gr.Button("Generate Heatmap", variant="primary")
heatmap = gr.Plot(label="Similarity Heatmap", visible=True)
# Use a single output (the figure)
generate_btn.click(
fn=validate_inputs,
inputs=[model_dropdown, dataset_dropdown],
queue=False
).then(
fn=create_heatmap,
inputs=[model_dropdown, dataset_dropdown],
outputs=heatmap
)
# Clear button: clear selections and the plot
clear_btn = gr.Button("Clear Selection")
clear_btn.click(
lambda: [None, None, None],
outputs=[model_dropdown, dataset_dropdown, heatmap]
)
if __name__ == "__main__":
demo.launch()
|