File size: 3,382 Bytes
2f2195a
874e761
465a95b
 
874e761
 
cdeeed6
2f2195a
465a95b
 
874e761
ffacaaa
465a95b
 
874e761
cc861f0
 
36159b1
 
 
465a95b
 
 
 
 
 
3c1039a
465a95b
 
 
 
 
 
 
36159b1
 
465a95b
874e761
465a95b
3c1039a
36159b1
 
465a95b
 
 
 
 
874e761
465a95b
 
874e761
465a95b
874e761
 
 
 
465a95b
 
 
f3cd231
 
c8f741c
f3cd231
 
4adb140
465a95b
 
 
 
 
 
32f9617
465a95b
2cee451
 
 
 
465a95b
2cee451
 
 
 
 
 
 
 
ffacaaa
cca1790
465a95b
 
cca1790
 
 
465a95b
cca1790
 
465a95b
ffacaaa
465a95b
cca1790
 
 
 
36159b1
465a95b
cca1790
 
 
465a95b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from io import BytesIO
from PIL import Image
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets

# Set matplotlib backend for non-GUI environments
plt.switch_backend('Agg')

def create_heatmap(selected_models, selected_dataset, selected_metric):
    if not selected_models or not selected_dataset:
        return None
    
    # Sort models and get short names
    selected_models = sorted(selected_models)
    selected_models_short = [model.split("/")[-1] for model in selected_models]
    
    # Generate random similarity matrix
    size = len(selected_models)
    similarities = np.random.rand(size, size)
    similarities = (similarities + similarities.T) / 2
    similarities = np.round(similarities, 2)

    # Create figure and heatmap using seaborn
    plt.figure(figsize=(8, 6))
    ax = sns.heatmap(
        similarities,
        annot=True,
        fmt=".2f",
        cmap="viridis",
        vmin=0,
        vmax=1,
        xticklabels=selected_models_short,
        yticklabels=selected_models_short
    )
    
    # Customize plot
    plt.title(f"{selected_metric} Similarities for {selected_dataset}", fontsize=16)
    plt.xlabel("Models", fontsize=14)
    plt.ylabel("Models", fontsize=14)
    plt.xticks(rotation=45, ha='right')
    plt.yticks(rotation=0)
    plt.tight_layout()

    # Save to buffer
    buf = BytesIO()
    plt.savefig(buf, format="png", dpi=100, bbox_inches="tight")
    plt.close()
    
    # Convert to PIL Image
    buf.seek(0)
    img = Image.open(buf).convert("RGB")
    return img

def validate_inputs(selected_models, selected_dataset):
    if not selected_models:
        raise gr.Error("Please select at least one model!")
    if not selected_dataset:
        raise gr.Error("Please select a dataset!")

with gr.Blocks(title="LLM Similarity Analyzer") as demo:
    gr.Markdown("## Model Similarity Comparison Tool")
    
    with gr.Row():
        dataset_dropdown = gr.Dropdown(
            choices=get_leaderboard_datasets(),
            label="Select Dataset",
            filterable=True,
            interactive=True,
            info="Open LLM Leaderboard v2 benchmark datasets"
        )
        metric_dropdown = gr.Dropdown(
            choices=["Kappa_p (prob.)", "Kappa_p (det.)", "Error Consistency"],
            label="Select Metric",
            info="Select a similarity metric to compute"
        )
        
    model_dropdown = gr.Dropdown(
        choices=get_leaderboard_models_cached(),
        label="Select Models",
        multiselect=True,
        filterable=True,
        allow_custom_value=False,
        info="Search and select multiple models"
    )
    
    generate_btn = gr.Button("Generate Heatmap", variant="primary")
    heatmap = gr.Image(label="Similarity Heatmap", visible=True)
    
    generate_btn.click(
        fn=validate_inputs,
        inputs=[model_dropdown, dataset_dropdown],
        queue=False
    ).then(
        fn=create_heatmap,
        inputs=[model_dropdown, dataset_dropdown, metric_dropdown],
        outputs=heatmap
    )
    
    clear_btn = gr.Button("Clear Selection")
    clear_btn.click(
        lambda: [[], None, None],
        outputs=[model_dropdown, dataset_dropdown, heatmap]
    )

if __name__ == "__main__":
    demo.launch(ssr_mode=False)