aristotle-api / app.py
bertugmirasyedi's picture
Changed subparts to functions
d9187f0
raw
history blame
12.6 kB
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
# Define the FastAPI app
app = FastAPI(docs_url="/")
# Add the CORS middleware to the app
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/search={query}&similarity={similarity}")
def search(query, similarity="false"):
import time
import requests
start_time = time.time()
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
def gbooks_search(query, n_results=30):
"""
Access the Google Books API and return the results.
"""
# Set the API endpoint and query parameters
url = "https://www.googleapis.com/books/v1/volumes"
params = {"q": str(query), "printType": "books", "maxResults": n_results}
# Send a GET request to the API with the specified parameters
response = requests.get(url, params=params)
# Parse the response JSON and append the results
data = response.json()
for item in data["items"]:
volume_info = item["volumeInfo"]
try:
titles.append(f"{volume_info['title']}: {volume_info['subtitle']}")
except KeyError:
titles.append(volume_info["title"])
try:
descriptions.append(volume_info["description"])
except KeyError:
descriptions.append("Null")
try:
publishers.append(volume_info["publisher"])
except KeyError:
publishers.append("Null")
try:
authors.append(volume_info["authors"][0])
except KeyError:
authors.append("Null")
try:
images.append(volume_info["imageLinks"]["thumbnail"])
except KeyError:
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
return titles, authors, publishers, descriptions, images
# Run the gbooks_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = gbooks_search(query)
# Append the results to the lists
titles.extend(titles_placeholder)
authors.extend(authors_placeholder)
publishers.extend(publishers_placeholder)
descriptions.extend(descriptions_placeholder)
images.extend(images_placeholder)
# Get the time since the start
first_checkpoint = time.time()
first_checkpoint_time = int(first_checkpoint - start_time)
def openalex_search(query, n_results=10):
"""
Run a search on OpenAlex and return the results.
"""
import pyalex
from pyalex import Works
# Add email to the config
pyalex.config.email = "[email protected]"
# Define a pager object with the same query
pager = Works().search(str(query)).paginate(per_page=n_results, n_max=n_results)
# Generate a list of the results
openalex_results = list(pager)
# Get the titles, descriptions, and publishers and append them to the lists
for result in openalex_results[0]:
try:
titles.append(result["title"])
except KeyError:
titles.append("Null")
try:
descriptions.append(result["abstract"])
except KeyError:
descriptions.append("Null")
try:
publishers.append(result["host_venue"]["publisher"])
except KeyError:
publishers.append("Null")
try:
authors.append(result["authorships"][0]["author"]["display_name"])
except KeyError:
authors.append("Null")
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
return titles, authors, publishers, descriptions, images
# Run the openalex_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = openalex_search(query)
# Append the results to the lists
titles.extend(titles_placeholder)
authors.extend(authors_placeholder)
publishers.extend(publishers_placeholder)
descriptions.extend(descriptions_placeholder)
images.extend(images_placeholder)
# Calculate the elapsed time between the first and second checkpoints
second_checkpoint = time.time()
second_checkpoint_time = int(second_checkpoint - first_checkpoint)
def openai_search(query, n_results=10):
"""
Create a query to the OpenAI ChatGPT API and return the results.
"""
import openai
# Set the OpenAI API key
openai.api_key = "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"
# Create ChatGPT query
chatgpt_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "You are a librarian. You are helping a patron find a book.",
},
{
"role": "user",
"content": f"Recommend me {n_results} books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
},
],
)
# Split the response into a list of results
chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split(
"\n"
)[2::2]
# Define a function to parse the results
def parse_result(
result, ordered_keys=["Title", "Author", "Publisher", "Summary"]
):
# Create a dict to store the key-value pairs
parsed_result = {}
for key in ordered_keys:
# Split the result string by the key and append the value to the list
if key != ordered_keys[-1]:
parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
else:
parsed_result[key] = result.split(f"{key}: ")[1]
return parsed_result
ordered_keys = ["Title", "Author", "Publisher", "Summary"]
for result in chatgpt_results:
try:
# Parse the result
parsed_result = parse_result(result, ordered_keys=ordered_keys)
# Append the parsed result to the lists
titles.append(parsed_result["Title"])
authors.append(parsed_result["Author"])
publishers.append(parsed_result["Publisher"])
descriptions.append(parsed_result["Summary"])
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
# In case the OpenAI API hits the limit
except IndexError:
break
return titles, authors, publishers, descriptions, images
# Run the openai_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = openai_search(query)
# Append the results to the lists
titles.extend(titles_placeholder)
authors.extend(authors_placeholder)
publishers.extend(publishers_placeholder)
descriptions.extend(descriptions_placeholder)
images.extend(images_placeholder)
# Calculate the elapsed time between the second and third checkpoints
third_checkpoint = time.time()
third_checkpoint_time = int(third_checkpoint - second_checkpoint)
def predict(titles, descriptions, publishers, similarity=similarity):
"""
Create a summarizer and classifier pipeline and return the results.
"""
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
pipeline,
)
from sentence_transformers import SentenceTransformer
# Combine title, description, and publisher into a single string
combined_data = [
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
for title, description, publisher in zip(titles, descriptions, publishers)
]
# Define the summarizer model and tokenizer
sum_tokenizer = AutoTokenizer.from_pretrained("pszemraj/led-base-book-summary")
sum_model = AutoModelForSeq2SeqLM.from_pretrained(
"pszemraj/led-base-book-summary"
)
# sum_model = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
summarizer_pipeline = pipeline(
"summarization",
model=sum_model,
tokenizer=sum_tokenizer,
batch_size=64,
)
# Define the zero-shot classifier
zs_tokenizer = AutoTokenizer.from_pretrained(
"sileod/deberta-v3-base-tasksource-nli"
)
zs_model = AutoModelForSequenceClassification.from_pretrained(
"sileod/deberta-v3-base-tasksource-nli"
)
zs_classifier = pipeline(
"zero-shot-classification",
model=zs_model,
tokenizer=zs_tokenizer,
batch_size=64,
hypothesis_template="This book is {}.",
multi_label=True,
)
# Summarize the descriptions
summaries = [
summarizer_pipeline(description[0:1024])
if (description != None)
else [{"summary_text": "Null"}]
for description in descriptions
]
# Predict the level of the book
candidate_labels = [
"Introductory",
"Advanced",
"Academic",
"Not Academic",
"Manual",
]
# Get the predicted labels
classes = [zs_classifier(doc, candidate_labels) for doc in combined_data]
# Calculate the similarity between the books
if similarity != "false":
from sentence_transformers import util
sentence_transformer = SentenceTransformer("all-MiniLM-L6-v2")
book_embeddings = sentence_transformer.encode(
combined_data, convert_to_tensor=True
)
similar_books = []
for i in range(len(titles)):
current_embedding = book_embeddings[i]
similarity_sorted = util.semantic_search(
current_embedding, book_embeddings, top_k=20
)
similar_books.append(
{
"sorted_by_similarity": similarity_sorted[0][1:],
}
)
else:
similar_books = [{"sorted_by_similarity": []} for i in range(len(titles))]
return summaries, classes, similar_books
# Run the predict function
summaries, classes, similar_books = predict(
titles, descriptions, publishers, similarity=similarity
)
# Calculate the elapsed time between the third and fourth checkpoints
fourth_checkpoint = time.time()
fourth_checkpoint_time = int(fourth_checkpoint - third_checkpoint)
# Calculate the elapsed time
end_time = time.time()
runtime = f"{end_time - start_time:.2f} seconds"
# Create a list of dictionaries to store the results
results = [
{
"id": i,
"title": titles[i],
"author": authors[i],
"publisher": publishers[i],
"image_link": images[i],
"labels": classes[i]["labels"][0:2],
"label_confidences": classes[i]["scores"][0:2],
"summary": summaries[i][0]["summary_text"],
"similar_books": similar_books[i]["sorted_by_similarity"],
"checkpoints": [
first_checkpoint_time,
second_checkpoint_time,
third_checkpoint_time,
fourth_checkpoint_time,
],
"runtime": runtime,
}
for i in range(len(titles))
]
return results