File size: 12,639 Bytes
6b67b82
7b4a17b
6b67b82
 
e02dc08
6b67b82
7b4a17b
 
 
 
 
 
 
 
 
 
6b67b82
cd3609c
6b67b82
 
 
 
 
 
 
 
 
 
 
 
d9187f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b67b82
 
 
 
d9187f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b67b82
 
d9187f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b67b82
d9187f0
 
 
 
 
6b67b82
d9187f0
 
6b67b82
d9187f0
 
 
 
6b67b82
d9187f0
 
 
 
 
 
6b67b82
d9187f0
 
 
 
6b67b82
d9187f0
 
 
 
 
 
 
 
 
 
 
7b4a17b
d9187f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff9411
 
d9187f0
 
 
fff9411
d9187f0
 
 
b8d6301
d9187f0
 
 
 
 
 
 
6b67b82
d9187f0
6b67b82
d9187f0
 
 
6b67b82
 
d9187f0
 
 
6b67b82
 
 
 
 
 
7b4a17b
 
 
 
 
 
 
 
 
 
 
d9187f0
 
 
 
 
 
7b4a17b
 
 
 
6b67b82
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware

# Define the FastAPI app
app = FastAPI(docs_url="/")

# Add the CORS middleware to the app
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.get("/search={query}&similarity={similarity}")
def search(query, similarity="false"):
    import time
    import requests

    start_time = time.time()

    # Initialize the lists to store the results
    titles = []
    authors = []
    publishers = []
    descriptions = []
    images = []

    def gbooks_search(query, n_results=30):
        """
        Access the Google Books API and return the results.
        """
        # Set the API endpoint and query parameters
        url = "https://www.googleapis.com/books/v1/volumes"
        params = {"q": str(query), "printType": "books", "maxResults": n_results}

        # Send a GET request to the API with the specified parameters
        response = requests.get(url, params=params)

        # Parse the response JSON and append the results
        data = response.json()

        for item in data["items"]:
            volume_info = item["volumeInfo"]
            try:
                titles.append(f"{volume_info['title']}: {volume_info['subtitle']}")
            except KeyError:
                titles.append(volume_info["title"])

            try:
                descriptions.append(volume_info["description"])
            except KeyError:
                descriptions.append("Null")

            try:
                publishers.append(volume_info["publisher"])
            except KeyError:
                publishers.append("Null")

            try:
                authors.append(volume_info["authors"][0])
            except KeyError:
                authors.append("Null")

            try:
                images.append(volume_info["imageLinks"]["thumbnail"])
            except KeyError:
                images.append(
                    "https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
                )

        return titles, authors, publishers, descriptions, images

    # Run the gbooks_search function
    (
        titles_placeholder,
        authors_placeholder,
        publishers_placeholder,
        descriptions_placeholder,
        images_placeholder,
    ) = gbooks_search(query)

    # Append the results to the lists
    titles.extend(titles_placeholder)
    authors.extend(authors_placeholder)
    publishers.extend(publishers_placeholder)
    descriptions.extend(descriptions_placeholder)
    images.extend(images_placeholder)

    # Get the time since the start
    first_checkpoint = time.time()
    first_checkpoint_time = int(first_checkpoint - start_time)

    def openalex_search(query, n_results=10):
        """
        Run a search on OpenAlex and return the results.
        """
        import pyalex
        from pyalex import Works

        # Add email to the config
        pyalex.config.email = "[email protected]"

        # Define a pager object with the same query
        pager = Works().search(str(query)).paginate(per_page=n_results, n_max=n_results)

        # Generate a list of the results
        openalex_results = list(pager)

        # Get the titles, descriptions, and publishers and append them to the lists
        for result in openalex_results[0]:
            try:
                titles.append(result["title"])
            except KeyError:
                titles.append("Null")

            try:
                descriptions.append(result["abstract"])
            except KeyError:
                descriptions.append("Null")

            try:
                publishers.append(result["host_venue"]["publisher"])
            except KeyError:
                publishers.append("Null")

            try:
                authors.append(result["authorships"][0]["author"]["display_name"])
            except KeyError:
                authors.append("Null")

            images.append(
                "https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
            )

            return titles, authors, publishers, descriptions, images

    # Run the openalex_search function
    (
        titles_placeholder,
        authors_placeholder,
        publishers_placeholder,
        descriptions_placeholder,
        images_placeholder,
    ) = openalex_search(query)

    # Append the results to the lists
    titles.extend(titles_placeholder)
    authors.extend(authors_placeholder)
    publishers.extend(publishers_placeholder)
    descriptions.extend(descriptions_placeholder)
    images.extend(images_placeholder)

    # Calculate the elapsed time between the first and second checkpoints
    second_checkpoint = time.time()
    second_checkpoint_time = int(second_checkpoint - first_checkpoint)

    def openai_search(query, n_results=10):
        """
        Create a query to the OpenAI ChatGPT API and return the results.
        """
        import openai

        # Set the OpenAI API key
        openai.api_key = "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"

        # Create ChatGPT query
        chatgpt_response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[
                {
                    "role": "system",
                    "content": "You are a librarian. You are helping a patron find a book.",
                },
                {
                    "role": "user",
                    "content": f"Recommend me {n_results} books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
                },
            ],
        )

        # Split the response into a list of results
        chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split(
            "\n"
        )[2::2]

        # Define a function to parse the results
        def parse_result(
            result, ordered_keys=["Title", "Author", "Publisher", "Summary"]
        ):
            # Create a dict to store the key-value pairs
            parsed_result = {}

            for key in ordered_keys:
                # Split the result string by the key and append the value to the list
                if key != ordered_keys[-1]:
                    parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
                else:
                    parsed_result[key] = result.split(f"{key}: ")[1]

            return parsed_result

        ordered_keys = ["Title", "Author", "Publisher", "Summary"]

        for result in chatgpt_results:
            try:
                # Parse the result
                parsed_result = parse_result(result, ordered_keys=ordered_keys)

                # Append the parsed result to the lists
                titles.append(parsed_result["Title"])
                authors.append(parsed_result["Author"])
                publishers.append(parsed_result["Publisher"])
                descriptions.append(parsed_result["Summary"])
                images.append(
                    "https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
                )

            # In case the OpenAI API hits the limit
            except IndexError:
                break

        return titles, authors, publishers, descriptions, images

    # Run the openai_search function
    (
        titles_placeholder,
        authors_placeholder,
        publishers_placeholder,
        descriptions_placeholder,
        images_placeholder,
    ) = openai_search(query)

    # Append the results to the lists
    titles.extend(titles_placeholder)
    authors.extend(authors_placeholder)
    publishers.extend(publishers_placeholder)
    descriptions.extend(descriptions_placeholder)
    images.extend(images_placeholder)

    # Calculate the elapsed time between the second and third checkpoints
    third_checkpoint = time.time()
    third_checkpoint_time = int(third_checkpoint - second_checkpoint)

    def predict(titles, descriptions, publishers, similarity=similarity):
        """
        Create a summarizer and classifier pipeline and return the results.
        """
        from transformers import (
            AutoTokenizer,
            AutoModelForSeq2SeqLM,
            AutoModelForSequenceClassification,
            pipeline,
        )
        from sentence_transformers import SentenceTransformer

        # Combine title, description, and publisher into a single string
        combined_data = [
            f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
            for title, description, publisher in zip(titles, descriptions, publishers)
        ]

        # Define the summarizer model and tokenizer
        sum_tokenizer = AutoTokenizer.from_pretrained("pszemraj/led-base-book-summary")

        sum_model = AutoModelForSeq2SeqLM.from_pretrained(
            "pszemraj/led-base-book-summary"
        )
        # sum_model = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")

        summarizer_pipeline = pipeline(
            "summarization",
            model=sum_model,
            tokenizer=sum_tokenizer,
            batch_size=64,
        )

        # Define the zero-shot classifier
        zs_tokenizer = AutoTokenizer.from_pretrained(
            "sileod/deberta-v3-base-tasksource-nli"
        )

        zs_model = AutoModelForSequenceClassification.from_pretrained(
            "sileod/deberta-v3-base-tasksource-nli"
        )
        zs_classifier = pipeline(
            "zero-shot-classification",
            model=zs_model,
            tokenizer=zs_tokenizer,
            batch_size=64,
            hypothesis_template="This book is {}.",
            multi_label=True,
        )

        # Summarize the descriptions
        summaries = [
            summarizer_pipeline(description[0:1024])
            if (description != None)
            else [{"summary_text": "Null"}]
            for description in descriptions
        ]

        # Predict the level of the book
        candidate_labels = [
            "Introductory",
            "Advanced",
            "Academic",
            "Not Academic",
            "Manual",
        ]

        # Get the predicted labels
        classes = [zs_classifier(doc, candidate_labels) for doc in combined_data]

        # Calculate the similarity between the books
        if similarity != "false":
            from sentence_transformers import util

            sentence_transformer = SentenceTransformer("all-MiniLM-L6-v2")
            book_embeddings = sentence_transformer.encode(
                combined_data, convert_to_tensor=True
            )

            similar_books = []
            for i in range(len(titles)):
                current_embedding = book_embeddings[i]

                similarity_sorted = util.semantic_search(
                    current_embedding, book_embeddings, top_k=20
                )

                similar_books.append(
                    {
                        "sorted_by_similarity": similarity_sorted[0][1:],
                    }
                )
        else:
            similar_books = [{"sorted_by_similarity": []} for i in range(len(titles))]

        return summaries, classes, similar_books

    # Run the predict function
    summaries, classes, similar_books = predict(
        titles, descriptions, publishers, similarity=similarity
    )

    # Calculate the elapsed time between the third and fourth checkpoints
    fourth_checkpoint = time.time()
    fourth_checkpoint_time = int(fourth_checkpoint - third_checkpoint)

    # Calculate the elapsed time
    end_time = time.time()
    runtime = f"{end_time - start_time:.2f} seconds"

    # Create a list of dictionaries to store the results
    results = [
        {
            "id": i,
            "title": titles[i],
            "author": authors[i],
            "publisher": publishers[i],
            "image_link": images[i],
            "labels": classes[i]["labels"][0:2],
            "label_confidences": classes[i]["scores"][0:2],
            "summary": summaries[i][0]["summary_text"],
            "similar_books": similar_books[i]["sorted_by_similarity"],
            "checkpoints": [
                first_checkpoint_time,
                second_checkpoint_time,
                third_checkpoint_time,
                fourth_checkpoint_time,
            ],
            "runtime": runtime,
        }
        for i in range(len(titles))
    ]

    return results